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Abstract

Microwave emissivity is an important parameter for rainfall estimation over land, as well as for atmospheric temperature and humidity

retrievals. However, over land surfaces, it varies over a considerable range depending principally on vegetation cover and soil moisture. This

study examines the feasibility of estimating emissivity from satellite-based vegetation and moisture indicators for a semiarid region in the

African Sahel. Microwave emissivity was calculated from SSM/I observations at 19, 37, and 85 GHz horizontal (H) and vertical (V)

polarisation. The technique was validated by comparing the measured emissivity of a sea surface area with the theoretically predicted

emissivity. For a dry atmosphere, there was good agreement between theory and measurement. However, the discrepancy was considerably

higher in an area where the atmosphere was humid, particularly at 85 GHz. This is attributable to increased uncertainty in atmospheric

correction. The land surface emissivity over a 5� square area, which included the Hapex Sahel site, was studied from August to October 1992.

The horizontally polarised emissivity eH and polarisation difference measured over dry land areas were found to be well-correlated with

Normalised Difference Vegetation Index (NDVI) such that NDVI can be used to estimate pixel eH to within ± 0.02. For a wet land surface,

there is a general trend for the emissivity to increase with increasing NDVI and for the polarisation difference to decrease. However, the trend

is much less well defined than in the dry case. Aweak relationship was observed between areal averages of previous day’s rainfall (PDR) and

emissivity for various vegetation cover classes. A similar relationship was observed with ground-based soil moisture measurements. The

results show that emissivity can be estimated with a S.E. < 0.015 at 19 GHz from a combination of NDVI and rainfall or soil moisture

information. D 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

Passive microwave satellite observations have an impor-

tant role to play in meteorology and climatology. Knowl-

edge of the microwave emissivity of the land surface is

essential for the application of microwave data to temper-

ature and humidity sounding (English, 1999), land surface

temperature retrievals (Basist, Grody, Peterson, & Wil-

liams, 1998), and rainfall estimation over land (Xiang &

Smith, 1997).

The research into microwave land surface emissivity

described here has been motivated by a need to improve

satellite-based rainfall estimates. In semiarid tropical areas

such as the African Sahel, real-time rainfall measurements

are vital for crop monitoring and drought and famine

warning. Ground-based rain gauge networks are usually

too sparse and do not provide timely information. On the

other hand, satellite images are available in real-time and

provide good spatial coverage. Most operational rainfall

estimation systems for the tropics are based on thermal

infrared (TIR) imagery from Geostationary satellites (e.g.,

Herman, Kumar, Arkin, & Kousky, 1997; Thorne, Coake-

ley, Grimes, & Dugdale, 2001). However, these techniques

rely on indirect inference of rainfall from cloud top

temperatures. Microwave imagery offers the potential for

improvement because microwave radiation is strongly

influenced by hydrometeors, and thus allows direct obser-

vation of rainfall and modelling of rainfall processes.

Lower microwave frequencies (less than about 40 GHz)

are most sensitive to the rain layer at the cloud base.

Enhanced emission due to rain shows up well against the

constant low emissivity background of the ocean allowing

the retrieval of rainfall using model inversion techniques
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(Kummerow & Giglio, 1994). Over land, the background

signal is both warmer and more variable than that from the

ocean making reliable rainfall retrieval considerably more

difficult. The variability of the land surface signal is due to

variations in microwave emissivity caused by moisture,

vegetation, and surface roughness. A major step forward

would be the ability to estimate microwave emissivity

from remote observations of vegetation and soil moisture.

This paper examines the feasibility of making such esti-

mates using satellite data. It follows on from work done

using airborne radiometers reported in Morland, Grimes,

Dugdale, and Hewison (2000).

The emissivity of a surface at a given wavelength is

defined as the ratio of the actual emission of electromag-

netic radiation from a surface at that wavelength to the

emission, which would be expected from a blackbody at the

same temperature.

The relationship between temperature and radiance is

approximately linear at microwave wavelengths (the Ray-

leigh Jeans approximation; Ulaby, Moore, & Fung, 1981).

Ignoring atmospheric effects between the surface and the

radiometer, To, the brightness temperature of the upwelling

surface radiation can be written in terms of Tp, the physical

temperature of the surface, Ta, the brightness temperature

of the downwelling atmospheric radiation, and e the sur-

face emissivity.

To ¼ eTp þ ð1� eÞTa

from which

e ¼ To � Ta

Tp � Ta
ð1Þ

where all variables apart from Tp are a function of

frequency n.
To retrieve surface emissivity from the satellite data, Ta

and Tp must be estimated and To as observed by the satellite

must be corrected for the effects of the intervening atmos-

phere. The details of how these corrections were carried out

in this study are given in Section 4.

2. Emissivity measurements

2.1. Measurements using ground and aircraft observations

In the frequency range of interest to passive microwave

rainfall algorithms (about 20–90 GHz), ground or aircraft-

based measurements of surface emissivity have been made

by a number of workers (e.g., Calvet, Wigneron, Chanzy, &

Haboudane, 1995; Mätzler, 1994; Morland et al., 2000;

Wigneron, Kerr, Chanzy, & Jin, 1993). The results indicate

that soil emissivity decreases with increasing water content

and the magnitude of the change is smaller at higher

frequencies. The effect of vegetation is relatively small at

low frequencies, but above 15 GHz, it may mask changes in

soil moisture emission. For example, Jackson (1997) shows

that 20-GHz emissivities have almost no sensitivity to soil

moisture in the presence of vegetation with a water content

of 1 kg m � 2. Thus, soil moisture and vegetation cover are

important parameters in determining surface emissivity

viewed from the satellite. Soil roughness also has an

important role to play in that it increases soil emissivity,

and hence counteracts the effect of increases in soil moisture

(Choudhury, Schmugge, Chang, & Newton, 1979). Other

factors, which have a minor or negligible effect on emis-

sivity at these frequencies, are soil texture, rock fraction,

organic matter content, temperature, and salinity (Hallikai-

nen, Ulaby, Dobson, El-Rayes, & Wu, 1985; Jackson,

Kostov, & Saatchi, 1992; Jackson & O’Neill, 1988; Sree-

nivas, Venkataratnam, & Narasimha Rao, 1995).

The three main influences on microwave emissivity —

soil moisture, vegetation cover, and soil roughness — all

vary temporally. This means that the emissivity at a given

location is continually changing and cannot be defined by a

single measurement. However, it may be possible to relate

the emissivity to the factors influencing it, and thus produce

a means of predicting microwave emissivity from other

data. In a previous publication (Morland et al., 2000), we

have explored the feasibility of this approach using aircraft

mounted sensors. In this paper, we extend the study to

satellite observations.

2.2. Measurements using satellite data

Choudhury (1993) calculated monthly averages of 19

and 37 GHz horizontally (H) and vertically (V) polarised

reflectivity (where reflectivity = 1� emissivity) for 1988

and 1989 over two desert and two vegetated sites in Africa.

He gridded SSM/I data into 0.25�� 0.25� cells and studied

a 9� 9 cell area around each site of interest. The difference

between the H and V brightness temperatures was calcu-

lated, and the data with the second lowest polarisation

difference were kept for each 10-day period with the aim

of minimising the effect of clouds and soil moisture varia-

tions. The brightness temperatures for each 10-day period

were then averaged to give a monthly mean. Ground

meteorological data were used to obtain surface temperature

and atmospheric corrections. Available meteorological data

were coincident with the rainforest and savannah locations,

but not with the desert location. Choudhury took daily mean

air temperature, adjusted for the time of the SSM/I overpass,

to be the ground temperature. Monthly mean surface vapour

pressure and daily mean surface temperature were used to

calculate downwelling microwave radiation and correct

upwelling microwave radiation for atmospheric effects.

This is a very simple method of calculating reflectivity

and emissivity, using only SSM/I observations and mete-

orological measurements averaged over daily or monthly

periods. One major problem is that the air temperature

measured at 2 m is often dissimilar to the ground temper-

ature, especially over bare soil surfaces. However, the
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method was sensitive enough to show a seasonal variation

in the reflectivity measured at the savannah site. The

reflectivity difference varied from 1% at a time of full

vegetation growth to 4% in the dry season. This suggests

that the monthly averaging of the results compensate for the

simplicity of the approach.

Prigent, Rossow, and Matthews (1997) also made

monthly estimates of emissivity. However, their method

was more sophisticated in that surface temperature was

derived from daily infrared satellite observations. They also

used daily remotely sensed temperature and water vapour

soundings to calculate atmospheric corrections. They calcu-

lated emissivity for the Meteosat viewing area (Africa,

Western Asia, and Europe) for all SSM/I channels (19

GHz H and V, 22 GHz V, 37 GHz H and V, 85 GHz H

and V). The grid spacing of the emissivity estimates was

25–30 km. The study covered March, July, October, and

December 1991.

Infrared data from the International Satellite Cloud

Climatology Project (ISCCP) at a spatial resolution of 30

km and temporal resolution of 3 h were used to identify

clouds. Prigent et al. (1997) used a threshold of 260 K to

eliminate cloudy data. They reasoned that thin cirrus could

be tolerated because it would have a negligible effect on

SSM/I observations. Atmospheric water vapour and temper-

ature data were obtained from daily satellite soundings.

These were available at a spacing of approximately 2.5�
in latitude and longitude. The atmospheric soundings were

used to calculate surface temperature from the ISCCP data

assuming a TIR emissivity of 1.0. Because the infrared

dataset had a temporal resolution of only 3 h, the data were

interpolated to the time of the SSM/I pass. They did not

specify how this affected cloud masking since clouds can

evolve considerably within a 3-h period. The remotely

sensed atmospheric water vapour and temperature profiles

were used to calculate downwelling microwave radiation

and to correct for the effect of the atmosphere on upwelling

microwave radiation.

Jones and Vonder Haar (1997) used a similar method to

Prigent et al., but calculated daily emissivity at SSM/I

frequencies across the USA for 70 days in summer to

autumn 1991. Surface temperature was derived from TIR

data obtained within 10 min of the SSM/I overpass. Infrared

and microwave atmospheric corrections were carried out

using temperature and water vapour profiles from an upper

air dataset. Interpolation was carried out between profiles

where necessary. The surface pressure was adjusted for

ground elevation using digital elevation model data. Cloud

contaminated areas were identified by low or negative

infrared atmospheric corrections. Some low fog escaped

detection, lowering the surface temperature by about 2 K,

but this was thought to have a negligible effect on the

emissivity results. Jones and Vonder Haar show that neglect-

ing atmospheric effects in the surface emissivity calculation

can cause errors of up to 40% at 85 GHz if the surface

emissivity is low. They present their emissivity results in the

form of composited imagery. Unfortunately, the computed

emissivities are not verified against independent data, rather

the images are discussed in terms of their ability to identify

surface features.

Xiang and Smith (1997) took quite a different approach

to emissivity calculation. By combining data from two

overpasses, they were able to solve a set of radiative transfer

equations for surface temperature and emissivities at 19, 37,

and 85 GHz. This method is restricted to cloud free areas for

which two SSM/I passes overlap on the same day. The

method also assumes that emissivity does not change during

the day, which would not necessarily be the case if there was

a significant change in soil moisture between the two

observation times. The retrieval algorithm produced an

average, unpolarised emissivity value at each frequency.

Xiang and Smith applied the method to the area surrounding

the Hapex Sahel study field site for a few days in 1992.

The emissivities were used as boundary conditions for a

physically based precipitation retrieval algorithm. Rain rates

calculated from the SSM/I measurements showed some

agreement with rain rates calculated from the EPSAT rain

gauge network. These results suggest that land surface

emissivity information can indeed improve microwave rain-

fall estimation techniques over land.

3. The study area

The area selected for this study was the Hapex Sahel

experimental site and surrounding area (0�–5�E and 11�–
16�N). Emissivity was calculated for a 92-day period from

1st August to 31st October 1992. This covered the transition

from the wet to the dry season, allowing the emissivity to be

estimated for different soil moisture conditions. The Hapex

Sahel area was chosen because it was the site of an intensive

measurement campaign in 1992 and many ground measure-

ments were available. The EPSAT rain gauge network is

located in this area (see Lebel, Sauvageot, Hoepffner, Des-

bois, Guillot, & Hubert, 1992). It extends from 1.6� to 3.3�E
and 13.0� to 14.0�N and provides rainfall observations at a

resolution of about 12.5 km. There was an increased rain

gauge density over sites of special interest (known as super

sites). The study area is also interesting because of the

change in vegetation cover from dense vegetation in the

extreme south, classified in Matthews (1983) as tropical

drought-deciduous forest, and very little or no vegetation

in the north, classified in Matthews (1983) as desert.

4. Method of emissivity measurement

4.1. General approach

Emissivity was estimated from the satellite data via Eq.

(1). For this calculation, measurements are required of To,

Ta, and Tp. Additionally, atmospheric temperature and
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humidity information is required to correct for atmospheric

effects between the radiometer and the surface.

The observed microwave brightness temperature, To, was

obtained from SSM/I imagery, the effective atmospheric

brightness temperature, Ta, was calculated from the Euro-

pean Centre for Medium Range Weather Forecasting

(ECMWF) model analyses of atmospheric temperature and

humidity profiles. The use of radiosonde data was also

considered, but trials showed that they contained many

errors and instabilities, and therefore the model data into

which some radiosonde data has been assimilated was

preferred. The physical surface temperature, Tp, was esti-

mated from Meteosat TIR imagery at the time closest to the

SSM/I overpass. Both To and Tp were corrected for atmos-

pheric effects using the method described below. Emissiv-

ities were calculated for all SSM/I frequencies.

4.2. Data preparation

The SSM/I instrument is carried on board the US DMSP

polar orbiting satellite and has seven channels. These

correspond to H and V polarisations at 19.35, 37.0, and

85.5 GHz and a Vonly polarisation at 22.235 GHz. A point

on the Earth’s surface in the tropics is sampled with a

frequency of at best once to twice daily. Table 1 gives the 3-

dB field of view of the SSM/I channels.

SSM/I brightness temperatures were extracted for the

area of study and projected onto a 5� square latitude/

longitude grid. The SSM/I data were oversampled in the

reprojection to achieve a similar resolution to Meteosat

TIR imagery (� 5 km). Each reprojected image was

128� 128 pixels, giving a resolution of 0.039� per pixel.

This is also conveniently a multiple of the resolution of the

AVHRR dataset (512� 512 pixels) used in estimating

vegetation cover.

Cloudy areas in the SSM/I images were identified using

Meteosat TIR imagery. Meteosat images are transmitted

every 30 min, so this meant that a TIR image was usually

available within 15 min of an SSM/I overpass. When a

TIR image was missing, the time gap could be as great as

half an hour. The Meteosat raw data were converted to

temperature in Kelvin and projected onto the same grid as

the SSM/I data.

Although passive microwave data is relatively unaffected

by thin, nonraining cloud, this is not true for the TIR data,

which provided the surface temperature information. A

cloud mask was therefore applied to the TIR images. An

examination of near surface air temperature, measured by

Monteny (1995) in the Hapex Sahel study area, showed that

air temperature was never lower than 290 K at the time of

the morning pass and 295 K at the time of the afternoon

pass. These values were adopted as the threshold for the

cloud mask.

There was occasionally some discrepancy between the

TIR cloud mask and the microwave data affected by cloud.

This was not surprising given that the two images could be

up to half an hour apart. In addition, even if there is no

temporal discrepancy, the microwave pixels are much larger

than the infrared pixels and can be affected by partial cloud

filling. To avoid this, pixels were rejected if the 85-GHz V

emissivity was lower than 0.85 on the basis that cloud top

ice causes scattering in this channel and reduces the

retrieved emissivity. The final cloud masking criteria were

stringent to ensure data quality. This meant that some wet

days were not included in the analysis because they con-

tained insufficient clear data.

4.3. Upwelling microwave temperature, To

The observed upwelling microwave temperature as seen

by a satellite at height h must be corrected for the effects of

the intervening atmosphere to give the temperature, which

would be observed at ground level for insertion in Eq. (1).

This correction was carried out using a microwave radiative

transfer program developed at the UK Meteorological

Office (English, 1995). The ECMWF analyses of temper-

ature and water vapour at 14 levels (European Centre for

Medium Range Weather Forecasting, 1995) were used to

provide temperature and humidity profiles for the model

inversion. The profiles were on a latitude/longitude grid at a

spacing of 0.5� giving 121 profiles in all. The analysis data

are available on a 6-h time step and the closest in time to the

SSM/I overpass (either 6 a.m. or 6 p.m.) was used. The

atmospheric contribution for each pixel on the image was

calculated from the nearest ECMWF profile grid point.

4.4. Downwelling microwave temperature, Ta

The same radiative transfer program and ECMWF anal-

ysis data as described above were used to calculate the

downwelling atmospheric brightness temperature measured

at the surface Ta for each pixel.

4.5. Surface temperature, Tp

The closest Meteosat TIR image to each SSM/I overpass

was used to calculate surface temperature (Tp). The Ray-

leigh Jeans approximation is less accurate at infrared wave-

lengths, and therefore the calculation was carried out in

terms of radiance.

The radiance Lo observed at the top of the atmosphere

(height, h) can be expressed as

LoðhÞ ¼ teIRBðTpÞ þ tð1� eIRÞLa#ð0Þ þ La"ðhÞ ð2Þ

Table 1

The 3-dB field of view of the SSM/I channels

Frequency (GHz) Field of view (km)

85.5 H and V 16� 14

37.0 H and V 38� 30

22.235 V 60� 40

19.35 H and V 70� 45
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where B is the Planck function integrated over the

radiometer response function, t is the atmospheric trans-

missivity, eIR is the infrared emissivity of the surface, La#(0)

is the downwelling radiance at the surface (height = 0), and

La"(h) is the upwelling radiance from the atmosphere at

height h. Eq. (2) can be conveniently rewritten as

LoðhÞ ¼ eIRBðTpÞ þ ð1� eIRÞLa#ð0Þ þ Lcorr ð3Þ

where the first two terms on the right-hand side represent the

upwelling radiance, which would be observed at ground

level, and Lcorr is a correction for absorption and emission

by the atmosphere of the total upwelling radiance.

Rearranging Eq. (3) gives

BðTpÞ ¼
LoðhÞ � ð1� eIRÞLa#ð0Þ � Lcorr

eIR
ð4Þ

from which Tp can be obtained by inverting the Planck

function. Thus, to calculate Tp, we need values for Lo(h),

eIR, La#(0), and Lcorr.

Lo(h) is obtained directly from the Meteosat data.

The downwelling radiance at ground level La#(0) was

calculated from Lo(h) using an infrared radiative transfer

program (Shine, 1991). The program was adapted to take

account of the Meteosat TIR radiometer response function

(Meteosat Exploitation Project, 1989). The same 121

ECMWF analysis profiles used in the calculation of the

microwave atmospheric correction were used as input to the

radiative transfer calculation.

To calculate Lcorr, it was observed that there was a linear

relation between Lcorr calculated from the model and the

modelled upwelling radiance at the top of the atmosphere

Lom(h). Fig. 1 shows an example for three locations on 2nd

August 1992. Values are plotted for Tp between 270 and 310

K. For each day and each of the 121 ECMWF grid points in

the 5�� 5� target area, Lcorr and Lom(h) were calculated

from the ECMWF profiles and parameters for the linear

relationship were obtained. These parameters were then

used to calculate Lcorr from the observed Lo(h) for all pixels

in the 128� 128 grid.

The infrared emissivity eIR was calculated from 10-day

Normalised Difference Vegetation Index (NDVI) maximum

value composites. Van de Griend and Owe (1993) used

experimental ground data obtained in Botswana to show

that there was a nonlinear relationship between NDVI and

TIR emissivity. Valor and Caselles (1996) provided a theo-

retical basis for this relationship and showed how it could be

applied to satellite data. The method requires knowledge of

local values of the TIR emissivity for bare soil and full

vegetation cover. It also requires some assumptions about the

dimensions and spacings of the vegetation. Valor and Case-

lles give an example of the implementation of the method

over the Hapex Sahel area and provide coefficients for this

region. Their methodology and coefficients were used here.

Using the results described above, B(Tp) and hence Tp
were calculated at each grid point via Eq. (4). The Meteosat

response function was taken into account when inverting the

Planck function.

4.6. Check on surface temperature calculation

The surface temperature calculation was checked by

comparing air temperature and soil temperature measured

at ground level during Hapex Sahel with the satellite

temperature for the same location. The problem here is

that point measurements are being compared with 5� 5

km pixel average temperatures. However, it should give

some indication of the effectiveness of the surface temper-

ature calculation.

Measurements of air temperature at 1.4 m were recorded

by Monteny (1995) at 2.7�E, 13.5�N (referred to from now

on as site M) and by Dugdale (1995) at 2.2� E, 13.2� N

(referred to from now on as site D). Soil temperatures at 2-cm

depth were also available for site M. These were compared

Fig. 1. The relationship between modelled upwelling TIR radiance at the top of the atmosphere Lom(h) and the correction to convert to upwelling radiance at the

surface Lcorr at three locations in the HAPEX Sahel area on 02/08/92. Input surface temperatures ranged from 270 to 310 K.
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with satellite Tp values for the corresponding pixel. Fig. 2

shows the ground and satellite data compared for times

coincident with the SSM/I morning and afternoon passes.

All cases where the satellite temperature was not affected by

cloud (i.e., T > 290 K) were included in the comparison. The

mean difference and root mean square difference (RMSD)

between satellite TIR temperatures and ground-based meas-

urements are summarised in Table 2. Fig. 2 shows a rough

correspondence between the ground-based observations and

the satellite estimates. Interestingly, the closest agreement is

with the afternoon air temperatures at site M.

Consideration of Table 2 suggests that the satellite is

systematically underestimating the surface temperature by a

few degrees. This may be due to inadequacies in the

atmospheric correction. However, it is difficult to be certain

because comparison is being made between point measure-

ments and pixel averages. It may be that the two sites used

are not representative of the respective pixels. Albedo,

vegetation, wind speed and direction, surface moisture,

and shading may all affect local conditions and as these

are not known more quantitative conclusions about the

satellite error cannot be drawn.

4.7. Microwave emissivity calculation

Microwave emissivities in all SSM/I channels at both H

and V polarisations were calculated via Eq. (1) after correc-

tion for atmospheric emission and absorption as described

above. Fig. 3a shows an example of the 85-GHz H emissivity

for the 5� square on the 26th of October 1992 when the

atmosphere was clear and the surface dry. It may be com-

pared to the NDVI composite image for the last decade in

October in Fig. 3b. It can be seen that there is a rough

correspondence between the spatial patterns of NDVI and

emissivity. Both parameters show a general increase from

north to south, and in both images the Niger River is visible

running diagonally across the images from NW to SE.

It is not easy to calculate an error on the final emissivity

estimate because errors in the data used are difficult to

evaluate. Validation of the estimated emissivities will be

dealt with in Section 4.8. Possible sources of error are:


 Satellite instrument errors,

 Errors in ECMWF water vapour and temperature

profiles

Fig. 2. Soil temperature (2 cm depth) and air temperature observations compared with surface temperature calculated from Meteosat TIR imagery for the

corresponding 5 � 5 km pixel for times coincident with the SSM/I overpasses (morning and afternoon). The open triangles represent site D and the filled

diamonds represent site M.

Table 2

Mean differences (MD) and RMSD between satellite TIR temperatures

(Tsat) and ground-based measurements (Tobs) for air temperatures measured

at 1.4 m and soil temperatures at 2 cm depth

Site M Site D

MD (K) RMSD (K) MD (K) RMSD (K)

Air � 1.9 2.7 � 5.4 5.8

� 4.8 5.1

� 1.0 4.9 � 6.4 7.4

� 4.2 7.0
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 Errors in model calculation of atmospheric correction

for infrared and microwave data

 Inadequate cloud masking due to time lag between

microwave and infrared observation or due to micro-

wave pixels being partially filled by cloud.

4.8. Check on microwave emissivity calculation

The accuracy of the emissivity estimates for open

water can be assessed by comparing them with theoretical

model values.

Two water targets were used for this evaluation:


 A sea, coast, and land area where the atmosphere

would normally be very dry (14.0�–19.0�W and

19.0�–24.0�N).

 A sea, coast, and land area where the atmosphere

would normally be humid (0.5�–5.5�E and 4.0�–
9.0�N).

A mainly cloud free sea area with dry atmosphere was

extracted for the afternoon pass on 25th October 1992. Two

mainly cloud free areas with moist atmosphere were

extracted from the morning passes on 25th and 26th October

1992. The emissivity was calculated at each of the SSM/I

frequencies using the microwave data, coincident METEO-

SAT TIR imagery, and ECMWF profiles of temperature and

water vapour at 0.5� spacing.
The emissivities were calculated theoretically using the

model described by English and Hewison (1998). This takes

into account the effects of frequency, temperature, salinity,

wind, surface swell, small-scale roughness, and the presence

of foam. The model requires information on frequency,

temperature, view angle, wind speed, and salinity.

Horizontal wind speed at 10-m height and 0.5� spacing

was extracted from the ECMWF daily analysis for the areas

of interest. Salinity was fixed at 35% for the sea surface. In

each case, the average TIR temperature of the water body

after land had been masked off was used as the input surface

temperature. The wind speed was allowed to vary across the

grid squares when calculating the emissivity. Input param-

eters are summarised in Table 3.

Table 4 shows the mean theoretical and observed sea

surface emissivity for the three examples. It shows that there

is a good agreement between the average emissivities

calculated and observed over the sea surface where the

atmosphere is dry. The agreement is to within 0.01 at 19

GHz, 0.015 at 22 and 37 GHz, and 0.035 at 85 GHz. As

might be expected, there is weaker agreement for the area

with the moist atmosphere, which indicates that errors in the

atmospheric profiles or atmospheric correction are contri-

buting to errors in the emissivity. The greatest discrepancies

(up to 0.17) are for the 85-GHz H polarisation. At this

frequency, there is greater sensitivity to changes in the

atmospheric profile. Errors at other frequencies are � 0.07

on 25th October 1992 and < 0.05 on 26th October 1992

Fig. 3. (a) 85 GHz H emissivity measured for the area 0� to 5� E and 11� to 16� N on 26/10/92. The white line indicates the 1 degree square shown in Fig. 4. (b)

NDVI calculated for the same area as Fig. 3a over the last dekad of October 1992. Each white circles represents a raingauge.

Table 3

Input parameters for calculation of sea surface emissivity

Date 25 October 1992 26 October 1992

View angle (�) 53 53

Salinity (%) 35 35

Surface temperature (K) 296.5 298.9

Mean windspeed (m s� 1) 2.3 1.6
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Jones and Vonder Haar (1997) analysed the error that

occurs in the emissivity calculation if the atmosphere is

ignored. They found that the error due to atmospheric effects

increases as the surface emissivity decreases. This is because

of the greater contribution to the observed radiance made by

atmospheric upwelling and reflected downwelling radiation.

They also observed that the 85-GHz channel is more affected

by water vapour than the lower frequencies, which is con-

sistent with the observations in Table 4. Similar results are

reported by Prigent et al. (1997).

For land surfaces, we would expect emissivities ranging

between 0.7 and 0.95, and therefore the errors due to

atmospheric correction should be lower than for the sea

surface. Table 4 gives only one sample for a dry atmos-

phere and two for moist conditions; nevertheless, we can

use it as a conservative indicator that at frequencies < 40

GHz we should expect emissivity errors < 0.015 over land

in a dry atmosphere and < 0.07 in a moist atmosphere. At

85.5 GHz, the corresponding numbers are < 0.035 (dry)

and 0.17 (moist).

5. Vegetation cover and soil moisture information

The main aim of this project is to investigate the

dependence of land surface microwave emissivity on

vegetation and soil moisture with a view to improving

rainfall estimation. The complete spatial coverage of veg-

etation and soil moisture required for comparison with the

emissivity retrievals is only feasible using satellite imagery.

In this work, we have used the NDVI to estimate vegeta-

tion cover. Unfortunately, no remotely sensed soil moisture

measurements are available from a satellite platform at

present, therefore, we have tried three alternative indica-

tors. These are:

(i) Previous day’s rainfall (PDR)

(ii) Ground-based soil moisture measurements from the

Hapex Sahel experiment

(iii) Antecedent Precipitation Index (API)

5.1. Calculation of NDVI

The NDVI is based on the fact that vegetation and soil

have similar reflectivities in the red region of the spec-

trum, but vegetation has a higher near-infrared reflectivity

than soil. The NDVI is defined as follows, where rR and

rNIR are red and near-infrared reflectivity, respectively

(Eq. (5)).

NDVI ¼ rNIR � rP
rNIR þ rR

ð5Þ

In this case, rR and rNIR were obtained from Channels 1

(0.58–0.68 mm) and 2 (0.725–1.1 mm) observations made by

Table 4

Comparison of mean theoretical and observed emissivity over the sea surface for areas with dry and moist atmospheric profiles

Emissivity Theoretical� observed emissivity

Date and time

Frequency

(GHz) Theoretical

Observed

(atmospheric

correction)

Observed

(no atmospheric

correction)

Atmospheric

correction

No atmospheric

correction

25 October 1992, 1601, 19.35 H 0.274 0.281 0.389 � 0.007 � 0.115

dry atmosphere 19.35 V 0.575 0.581 0.643 � 0.006 � 0.068

22.235 V 0.586 0.572 0.702 + 0.014 � 0.116

37.0 H 0.325 0.331 0.468 � 0.006 � 0.143

37.0 V 0.644 0.629 0.703 + 0.015 � 0.059

85.5 H 0.417 0.392 0.664 + 0.025 � 0.247

85.5 V 0.756 0.722 0.842 + 0.034 � 0.086

25 October 1992, 0516, 19.35 H 0.273 0.339 0.542 � 0.066 � 0.269

moist atmosphere 19.35 V 0.570 0.615 0.730 � 0.045 � 0.160

22.235 V 0.579 0.646 0.854 � 0.067 � 0.275

37.0 H 0.318 0.373 0.586 � 0.055 � 0.268

37.0 V 0.628 0.652 0.766 � 0.024 � 0.138

85.5 H 0.404 0.578 0.880 � 0.174 � 0.476

85.5 V 0.736 0.807 0.932 � 0.072 � 0.196

26 October 1992, 0445, 19.35 H 0.273 0.315 0.511 � 0.042 � 0.238

moist atmosphere 19.35 V 0.571 0.602 0.713 � 0.031 � 0.142

22.235 V 0.580 0.618 0.829 � 0.037 � 0.249

37.0 H 0.316 0.346 0.557 � 0.030 � 0.241

37.0 V 0.629 0.638 0.750 � 0.008 � 0.121

85.5 H 0.403 0.518 0.852 � 0.116 � 0.449

85.5 V 0.737 0.781 0.919 � 0.043 � 0.182
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the AVHRR polar-orbiting satellite. The reflectivity data for

the Hapex Sahel area (0�–5�E and 11�–16�N) were obtained
from the Hapex Sahel database. The processing of AVHRR

observations to produce reflectivities was carried out by

Kerr, Lagouarde, and Imbernon (1992). A cloud mask was

applied to this data set before the NDVI was calculated.

Cloud was identified as having a combination of low temper-

ature and high reflectivity relative to the land surface. All

AVHRR Channel 5 brightness temperatures (11.5–12.5 mm)

less than or equal to 283 K were reclassified as 283.1 K. A

cloud index was then calculated as rR/(T5 * � 283) where

T5 * denotes the reclassified temperatures. High values of

this index indicate cloud. A number of cloud index images

from different months and times of day were examined to

determine the optimum cloud threshold. The delineation

between cloud and land was not always clear cut but a

threshold was assigned, which varied according to the time

of day but did not change from month to month.

Any cloudy pixels distinguished by the cloud index

threshold were set to zero. The NDVI was calculated over

approximately 10-day periods according to data availability.

A maximum value composite was created by taking the

maximum observed NDVI for each pixel. Since cloud or

water vapour lowers the observed reflectivity values, the

highest NDVI value for each pixel in a 10-day series is the

observation least affected by cloud and water vapour. Fig.

3b shows a sample NDVI image.

The composites covering August and September had

some zero values where there was persistent cloud over

the area, as well as pockets where the NDVI was consid-

erably lower than in surrounding areas due to water vapour

absorption. Calculation of the local interpixel NDVI gra-

dient allowed areas where the NDVI decreased suddenly to

be identified and masked.

5.2. Soil moisture information

5.2.1. Previous day’s rainfall

The simplest indirect indicator of soil moisture is the

PDR (measured at 6 a.m. and assigned to the preceding

day). Most rainfall in the region occurs between afternoon

and nighttime. As little evaporation takes place at night

but rapid evaporation occurs during daylight hours, it

might be expected that this method would give a reason-

able representation of near surface moisture for morning

SSM/I overpasses.

Fig. 3b shows the rain gauges available for the study

against the background of an NDVI image. The high

concentration observable in the centre of the image is the

EPSAT dense network with gauges spaced at approximately

12-km intervals. In contrast, there are very few rain gauges

outside this area. Some 1� squares contain no rain gauges

whatsoever. The geostatistical technique of block kriging

(Journel & Huijbregts, 1978) was used to generate a rainfall

field with the same spatial resolution as the satellite data. In

order to increase the amount of data available for the kriging

process, all rain gauges between 1�W and 6�E and 10�–
17�N were included. This gave a total of 176 rain gauges of

which 100 lay in the Hapex Sahel 1� square.

5.2.2. Ground-based soil moisture measurements

Some direct soil moisture measurements were available

for a number of sites in the study area (Fig. 4) as part of the

Hapex Sahel experiment. Different techniques were used at

different sites including gravimetric analysis, time domain

reflectometry, and neutron probe measurements. The data

were obtained from the Hapex Sahel CD-ROM (Chanzy,

1995; Cooper, 1995; Stricker, 1995). Measurements were

made at a range of depths down to 2 m. As microwave

emission at SSM/I frequencies is mainly determined by the

topmost layers of soil, only estimates from depths above 10

cm are considered here. Within this depth range, measure-

ments were available for 0–0.5, 0.5–2, 0–5, and 0–10 cm.

However, sufficient days of coincident soil moisture and

emissivity estimates were present only for the 0–5-cm

range. Therefore, the analysis in subsequent sections focu-

ses on this depth. Six of the sites in Fig. 4 recorded 0–5 cm

soil moisture. Measurement times varied but were usually

morning or early afternoon.

5.2.3. Antecedent Precipitation Index

A third approach to soil moisture estimation is the

calculation of an API. This is a simple indicator of moisture

in the upper soil layers and is described in detail by

Choudhury and Blanchard (1983). The API on a specific

day is calculated from rainfall and potential evaporation

history, as well as information on soil characteristics. In this

study, daily API was calculated from kriged rain gauge

observations and potential evaporation data obtained from

Fig. 4. Soil moisture sites available from HAPEX-Sahel shown as white

squares against the background of an NDVI image for the area 2� to 3� E,
13 �to 14� N. The white line indicates the 0.5� square over which emissivity

estimates were averaged for comparison with soil moisture measurements.
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the Hapex Sahel study (Monteny, 1995). It was found that

the API was in every case less well correlated with emis-

sivity than was the PDR. This may be because, in semiarid

areas, near surface moisture dries out within a few hours of a

rainfall event, and the API places too much emphasis on

past rainfall. In the following sections, only results using

PDR and soil moisture measurements are reported.

6. Relationship between emissivity and vegetation cover

6.1. Dry conditions

For the month of October, when the area was mainly dry,

the emissivity data were compared with the appropriate 10-

day NDVI composite.

Fig. 5 shows the H polarisation emissivity eH and V–H

polarisation difference(eV�eH), at 19, 37, and 85 GHz for

each pixel plotted against NDVI for 26th October 1992, a

dry day. The SSM/I data were acquired during the morning

pass. The whole of the 5� square was cloud free, and no rain

had fallen since the 24th October 1992 when four stations

had reported rainfall.

It can be seen that the eH increases nonlinearly and

(eV�eH) decreases nonlinearly with NDVI. The V polar-

isation emissivity, eV, was relatively independent of the

vegetation index. The maximum (eV�eH) is 0.15, 0.12,

and 0.10 at 19, 37, and 85 GHz, respectively. The minimum

eH is 0.84, 0.83, and 0.83 at 19, 37, and 85 GHz, respectively.

In order to define a representative curve for dry con-

ditions, eight passes were selected for which the study area

was almost certainly dry. From the 21st to the 31st October,

the only rain recorded was at four gauges on the 24th. The

images used in the dry study were the morning passes on

23rd, 24th (rain had not yet fallen), 26th, 27th, and 31st

October and the afternoon passes on 25th, 30th, and 31st.

An empirical function of the form (Eq. (6))

e ¼ aþ blogeðNcÞ ð6Þ

was fitted to the data. Here, e represents either eH or eV�eH,

N is the NDVI, and a, b, and c are empirical coefficients to

be optimised.

The mean a, b, and c coefficients, the mean correlation

coefficient, r2, and the standard deviation of the coefficients

were calculated and listed in Table 5.

Table 5 shows that there is little variation with

frequency in the fit between eH and NDVI. The mean

value of r2 increases slightly with decreasing frequency

and is higher for (eV�eH) than for eH. The standard

deviation of the a and c coefficients is about 1% of their

value, and the standard deviation of the b coefficient is

about 10% of its value. Varying the a, b, and c coef-

ficients by 1 S.D. causes emissivity changes of ± 0.012,

± 0.008, and ± 0.001, respectively.

The emissivity for the morning pass on 26th October

1992 was calculated from the 10-day NDVI composite

using the mean dry curve coefficients given in Table 5.

The last column of the table gives the mean absolute

difference (MAD) between the measured and calculated

emissivities. It can be seen that the MAD increases slightly

with frequency, but is of the order 0.01. The standard

deviation of the MAD is 0.006. This implies that NDVI

observations in dry conditions can be used to calculate

Fig. 5. The H polarisation emissivity and V-H polarisation difference at 19, 37 and 85 GHz plotted against NDVI for dry conditions on 26/10/92. Each point

represents a pixel least squares best fit curves are shown as solid lines.
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individual pixel emissivities to within ± 0.02 (MAD+ 2

S.D.) for all frequencies.

6.2. Wet conditions

The microwave emissivity calculated for wet conditions

was compared with the appropriate 10-day NDVI composite.

Fig. 6 shows the 19-, 37-, and 85-GHz eH and (eV�eH)

plotted against NDVI for the morning pass on 31st August

1992. There was heavy rainfall on the 30th August 1992. The

average value of the kriged rainfall estimates for 30th August

1992 was 23 mm. Since rainfall in this region generally

occurs in the evening or at night, the surface moisture at the

time of the early morning pass on 31st August 1992 would

probably not have had a chance to evaporate.

The relationship is less clear than under dry conditions

with a much greater range of emissivity values for a given

NDVI. However, one can still observe a systematic

increase in eH with increasing NDVI and a systematic

decrease in (eV�eH). In general, eH values are lower at

lower frequencies and the polarisation difference is greater.

This is in line with the effect of moisture on eH being

greater at lower frequencies.

The scatter is greater for lower NDVI at all frequencies.

This is consistent with the fact that moisture causes a

much greater reduction in the emissivity of soil than in the

emissivity of vegetation. Spatial variation in soil moisture

is reflected in the high variance of eH at low NDVI where

vegetation is sparse and soil emissions form a major part

of the observed signal. At high NDVI, the vegetation

masks the soil to a much greater extent and the emissivity

variance is reduced although it is still high in comparison

with the ‘dry’ data in Fig. 5. This is presumably because

of the decreased accuracy of the moist atmospheric cor-

rection already mentioned in the sea surface emissivity

comparison. These observations agree with those reported

Table 5

The mean coefficients of the fit to H polarisation emissivity and polarisation difference for eight images obtained in dry conditions

Dataset

a coefficient

(S.D.)

b coefficient

(S.D.)

c coefficient

(S.D.)

Mean value

of r2

Mean absolute

difference between

measured and

calculated emissivity

(26 October 1992)

85 GHz H 0.996 (0.013) 0.077 (0.009) 0.997 (0.013) 0.78 0.010

37 GHz H 0.988 (0.016) 0.072 (0.010) 0.993 (0.017) 0.83 0.009

19 GHz H 1.001 (0.012) 0.077 (0.008) 1.003 (0.012) 0.86 0.008

85 GHz V–H � 0.099 (0.007) � 0.062 (0.004) 0.334 (0.025) 0.82 0.009

37 GHz V–H � 0.126 (0.011) � 0.082 (0.004) 0.355 (0.033) 0.92 0.008

19 GHz V–H � 0.146 (0.013) � 0.096 (0.005) 0.346 (0.041) 0.92 0.009

The last column gives the mean absolute error in calculating emissivity on 26th October 1992 from NDVI using the coefficients of the mean dry curve.

Fig. 6. The H polarisation emissivity and V-H polarisation difference at 19, 37 and 85 GHz plotted against NDVI for wet conditions on 30/08/92. Each point

represents a pixel least squares best fit curves are shown as solid lines.
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by Morland et al. (2000) for aircraft observations in wet

and dry conditions and illustrate the importance of reliable

soil moisture data if microwave emissivity is to be esti-

mated after or during rainfall.

6.3. Wet and dry conditions compared

Eight images corresponding to wet conditions were

identified in order to compare them with the eight images

for dry conditions described earlier. The TIR images coin-

cident with the SSM/I passes were examined to find

examples where there was cloud with tops cold enough to

indicate rain in the west and clear areas to the east. Since

storms normally move from East to West, this situation

means that rain has recently fallen over some of the land

surface visible in the East. Eight images in August and

September (four mornings and four afternoons) were iden-

tified, which fulfilled these criteria.

A clearer picture of the relationship between emissivity

and NDVI emerges if mean values over selected NDVI

ranges are considered. The H emissivities for wet and dry

images were binned by NDVI range (0.1–0.2, 0.2–0.3, 0.3–

0.4, 0.4–0.5, 0.5–0.7). The lowest range represents bare soil

and the highest indicates dense vegetation. The mean eH in

each NDVI bin was calculated for all eight wet passes taken

together and all eight dry passes and the results are shown in

Fig. 7. The 85-GHz H emissivity is plotted against the centre

of the NDVI range, while the 19- and 37-GHz H emissivities

are plotted slightly off-centre for clarity. The area covered by

each NDVI class is typically several thousand square kilo-

meters. The error bars represent the standard deviation of the

pixel emissivity in that NDVI class.

From previously stated arguments, one would expect a

reduction in emissivity under wet conditions, which is less

at higher frequencies and higher NDVI values. In fact, the

observed pattern is more complicated. The mean eH at 85

GHz is higher for wet data than for dry data, but the

standard deviation is also higher. The reason for this is

probably that 85 GHz is the channel most subject to errors

in the atmospheric correction when the atmosphere is

moist and this may be increasing the mean emissivity in

wet conditions.

For 19 and 37 GHz, the similarity of the wet and dry

mean emissivities at high NDVI conforms to expectation as

the vegetation will mask the effect of increased soil mois-

ture. Also for intermediate NDVI values (0.3–0.5), there is

the expected decrease in emissivity from dry to wet con-

ditions. However, at low NDVI (0.1–0.3), the emissivities

for wet conditions are slightly higher. Plotting the emissiv-

ities for the individual days (Fig. 8) throws some light on

this. It can be seen that the highest emissivities at low NDVI

correspond to afternoon (p.m.) overpasses when the ground

surface may have already dried out. The mean value of the

morning (a.m.) wet overpasses is in fact lower than the

mean dry value.

Fig. 7. (a) Mean H polarisation emissivity binned by NDVI range and

averaged over eight dry days. 85 GHz emissivity is plotted against the

centre of the NDVI range. 19 GHz and 37 GHz are plotted off-centre for

clarity. The error bars show the standard deviation of the emissivity in each

range. (b) As for (a) but showing results from the eight wet days.

Fig. 8. (a) The mean H polarisation emissivity binned by NDVI range for

each of the eight dry days at 19 GHz. (b) As for (a) but showing the eight

wet days.
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Fig. 8 also shows emissivity versus NDVI for individual

dry days. It can be seen that the mean emissivity of each dry

image increases with NDVI in a consistent manner with a

range of ± 0.015 at 19 GHz. The mean emissivity of each

wet image also increases with NDVI, but there is greater

variation between the individual images (up to ± 0.03 at 19

GHz) even when morning and afternoon images are con-

sidered separately.

These results confirm the consistency of the relationship

between NDVI and emissivity under dry conditions. Under

wet conditions, there is still a clear relationship between

emissivity and NDVI on any individual day, but the varia-

tion between days is significantly greater. This is to be

expected from the combined effect of spatial and temporal

variability in rainfall (and hence soil moisture) and greater

error in atmospheric correction. Section 7 discusses whether

information on soil moisture can be used to improve the

accuracy of the computed emissivities.

7. Relationship between emissivity and soil moisture

7.1. PDR estimates

In an attempt to establish a more quantitative relationship

between soil moisture and emissivity, for each morning pass

for which data were available, pixels were binned according

to the NDVI classes used in Figs. 7 and 8. The mean and

standard deviation of eH were calculated for each NDVI

class in each image and compared with the mean PDR for

the same set of pixels. The results at 19 GHz for bare soil

(0.1�NDVI� 0.2) are plotted in Fig. 9. Although there is a

high degree of scatter, the emissivity shows the expected

decrease with increasing wetness. In contrast, the standard

deviation of the emissivity increases with increasing wet-

ness. This is presumably due to both the increase in spatial

variability of rainfall with increasing amount, as well as the

effect of local variations in soil characteristics and top-

ography. The relationship between PDR and eV is signifi-

cantly weaker and is not recorded here.

Table 6 summarises the gradient m, intercept c, and

correlation coefficient r2 for the best linear fit between the

mean and standard deviation of eH and the PDR for all NDVI

ranges. In general, the correlation decreases with increasing

frequency. The low values of r2 shown in Table 6 and

Fig. 9. (a) Mean 19 GHz H emissivity for bare soil plotted against the

previous days rainfall for October 1992, (morning passes only). (b) As for

(a) but showing standard deviation of emissivity plotted against previous

day’s rainfall. The least squares best fit line is shown in each case.

Table 6

Parameters for the best linear fit between mean and S.D. of eH and PDR (morning passes only) for all NDVI ranges and frequencies

Mean emissivity S.D. of emissivity

Frequency (GHz) No. of days NDVI (mid-range) c m (mm� 1) r2 c m (mm� 1) r2

19 49 0.150 0.881 � 0.0022 0.265 0.012 0.0008 0.542

49 0.250 0.896 � 0.0026 0.286 0.015 0.0010 0.499

49 0.350 0.919 � 0.0027 0.218 0.014 0.0009 0.403

48 0.450 0.935 � 0.0021 0.174 0.014 0.0005 0.147

39 0.600 0.947 � 0.0014 0.100 0.011 0.0005 0.177

37 49 0.150 0.881 � 0.0014 0.147 0.013 0.0005 0.293

49 0.250 0.894 � 0.0015 0.174 0.015 0.0007 0.463

49 0.350 0.916 � 0.0022 0.211 0.013 0.0007 0.386

48 0.450 0.927 � 0.0018 0.169 0.013 0.0003 0.100

39 0.600 0.934 � 0.0012 0.098 0.011 0.0005 0.188

85 49 0.150 0.894 � 0.0003 0.005 0.020 0.0004 0.093

49 0.250 0.908 � 0.0004 0.008 0.021 0.0004 0.095

49 0.350 0.930 � 0.0007 0.026 0.019 0.0004 0.118

48 0.450 0.939 � 0.0006 0.027 0.019 0.0002 0.032

39 0.600 0.941 0.0000 0.000 0.018 0.0004 0.048

m is slope, c is intercept, r2 is correlation coefficient.
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exemplified by the scatter in Fig. 9a indicate that a relation-

ship between emissivity and PDR exists but is rather weak.

Nevertheless, some consistent patterns emerge. The intercept

c (corresponding to dry soil) increases with increasing NDVI

and the values agree with the ‘dry’ results from the smaller

data set of Fig. 8a. The slope m is lower for high NDVI,

indicative of the reduced effect of moisture on the emissivity

of dense vegetation. The masking effect of the vegetation is

also apparent in the decrease of r2 with increasing NDVI. As

the soil contributes less to the pixel emissivity, the effect of

soil moisture is less significant and the relationship with

rainfall is therefore weaker. Interestingly, the PDR is corre-

lated much more strongly with the standard deviation of

emissivity than with the emissivity itself. This suggests the

intriguing possibility of using the spatial variability of

emissivity in a given NDVI class as a means of monitoring

rainfall. If this were to be done, the 1-km resolution of the

NDVI data means that a reasonable estimate of the emissiv-

ity standard deviation for at least some NDVI classes could

probably be made at a 1� resolution. The correlation between
emissivity standard deviation and rainfall amount also

decreases at high NDVI due to vegetation masking.

Of interest is how accurately the areal mean emissivity can

be estimated fromPDR for a givenNDVI range. For zero PDR

(dry soil), the calculated standard error on eH is about ± 0.003

for all NDVI ranges, while for a PDR of 25 mm (wet soil), the

standard error is about ± 0.015.While these figures should be

treated with some caution because of the small amount of data

for high rainfall amounts, they demonstrate that there is some

skill in using a combination of vegetation index and PDR to

estimate microwave emissivity averaged over several thou-

sand square kilometers. Given that the results are based on a

rather simplistic assumption about the relation between soil

moisture and rainfall calculated from a sparse rain gauge

network, it is likely thatmuchmore accurate emissivity values

are achievable with better soil moisture data.

The same analysis was carried out using polarisation

difference (eV�eH) instead of eH. The correlations were

consistently lower at all frequencies.

7.2. Soil moisture measurements

For each day for which soil moisture measurements were

available in the 0–5-cm range, a mean value was calculated

and compared with the microwave emissivity averaged over

the 0.5� square from 13.1� to 13.6�N and 2.2� to 2.7�E
shown in Fig. 4. The size of this square is a compromise

between an area small enough to be directly comparable

with the point moisture measurements and large enough to

contain a significant cloud-free area on most days (‘a

significant cloud-free area’ in this context means > 40

cloud-free pixels according to the index defined previously).

The range of NDVI in this square is roughly 0.2–0.5 —

spanning three of the ranges used in the PDR measurements.

As for the PDR data, a best fit linear relationship between

the percentage soil moisture q and eH or polarisation differ-

ence (eV�eH) was determined. The results are summarised

in Table 7 and are in qualitative agreement with the PDR data

reported above. As expected, emissivity decreases with

increasing q and the rate of decrease (indicated by the slope

m of the linear relationship in Table 7) is lower at higher

frequencies. eH is more sensitive than eV to moisture changes

(larger m) and has a higher correlation at all frequencies. The

correlation is also higher at all frequencies for the morning

overpasses, reflecting the fact that most moisture measure-

ments were made in the morning. In contrast to the PDR

results, polarisation difference shows a slightly stronger

relationship (greater r2) than the emissivity itself.

Although the r2 values appear to indicate a much better

correlation for emissivity with soil moisture observations

than with PDR, this is mainly a result of the difference of

numbers of data points in the regression. A Student’s t test

shows in fact that both regressions have a similar signifi-

cance (P� 0.0003). The standard error for emissivity values

calculated from the regression line is � 0.015.

Fig. 10 shows the 19-GHz H emissivity plotted against

soil moisture. The decrease in emissivity between the

Table 7

(a) Parameters for the best linear fit between mean of eH and soil moist-

ure q (morning passes only) for all frequencies. m is slope, c is intercept,

r2 is correlation coefficient.

Frequency (GHz) No. of days c m (%� 1) r2

Morning passes only

19 H 19 0.95 � 0.0100 0.57

37 H 19 0.94 � 0.0076 0.56

85 H 19 0.93 � 0.0040 0.17

19 (V–H) 19 0.055 0.0049 0.60

37 (V–H) 19 0.044 0.0036 0.59

85 (V–H) 19 0.028 0.0028 0.34

(b) As for (a) but afternoon passes.

Afternoon passes only

19 H 25 0.92 � 0.0037 0.55

37 H 25 0.91 � 0.0024 0.35

85 H 25 0.92 � 0.0042 0.06

19 (V–H) 25 0.059 0.0021 0.38

37 (V–H) 25 0.051 0.0009 0.15

85 (V–H) 25 0.036 0.0005 0.04

Fig. 10. Mean 19 GHz emissivity for the square 2.2� to 2.7� E and 13.1� to
13.60� N plotted against mean soil moisture from 0 to 5 cm. Solid line is

least squares best fit to points.
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extremes of dry (q = 0%) and wet (q = 12%) is roughly

comparable with the change observed for PDR between 0

and 25 mm for NDVI in the range 0.2–0.4.

Both the PDR and the soil moisture results are in

qualitative agreement with previously reported results from

ground and aircraft measurements (e.g., Morland et al.,

2000) showing that soil moisture generally decreases emis-

sivity, increases polarisation difference, and increases the

range of observed emissivity.

8. Conclusions

A method has been demonstrated for the calculation of

microwave emissivity from SSM/I observations, Meteosat

TIR data, and the ECMWF analysis of atmospheric temper-

ature and water vapour. The emissivity of the sea surface

calculated using this method agreed with theory to within

± 0.034 in an area with a dry atmospheric profile. In an area

with a moist atmospheric profile, the agreement was poorer,

being to within ± 0.072 or less apart from the 85-GHz H

channel where the discrepancy was as much as 0.174. The

fact that the measured sea surface emissivity was consis-

tently greater than the calculated emissivity for the moist

profile suggests that the atmospheric correction is under-

estimated. As land surface emissivities are considerably

higher than that of water, the figures quoted here represent

a conservative upper bound on the errors expected for land

surface emissivities.

This study shows that there is a clear, nonlinear relation-

ship between microwave emissivity and NDVI when the

surface is dry. The pixel H emissivity and polarisation

difference can be predicted to an accuracy of ± 0.02 in

dry conditions if the NDVI is available. This is a useful

result since it can establish the microwave emissivity at the

beginning of a rainfall period.

In wet conditions, the lowest eH values generally occur for

the lowest NDVI values. However, there is a much greater

spread of emissivity for a given NDVI. This is attributable to

variations in rainfall and surface characteristics across each

5� square image, as well as the higher errors in the emissivity

calculation when the atmosphere is moist.

In order to quantify the effects of surface wetness on

emissivity, the PDR and ground-based soil moisture meas-

urements were used as indicators. In both cases, results were

best for 19-GHz H polarisation and polarisation difference.

At this frequency, a combination of NDVI and PDR can

estimate mean eH over an area of several thousand square

kilometers with a standard error of ± 0.003 in dry conditions

or ± 0.015 after 25 mm of rainfall. The error on estimates

based on soil moisture measurements within a limited

vegetation range was comparable. The lower correlations

obtained for afternoon overpasses demonstrate the rapidity

with which soil dries out in a semiarid environment and

emphasize the need for contemporaneous soil moisture and

emissivity in any such future studies. These results were

based on a very limited amount the data and more work

needs to be done in this area, however, there is a strong

suggestion that useful estimates of microwave emissivities

for frequencies < 40 GHz can be made from a combination

of vegetation and moisture indicators.

The results show that wetted areas can be mapped by

observing microwave emissivity changes between wet and

dry conditions. They also show that spatial variability in

emissivity can be linked to the PDR. In terms of accurate

retrievals of rainfall from PMW sensing over land surfaces,

however, there is still some way to go. It is clear that

improvement is needed both in quantifying soil moisture

and in understanding its effect on surface emissivity partic-

ularly in partly vegetated areas. For more accurate modeling

of soil moisture, more accurate data on rainfall, potential

evaporation, and soil characteristics are needed. For much of

Africa, ground-based data of this kind are not a realistic

aspiration. Alternatively, one can hope for better measure-

ments of soil moisture from space-borne sensors. At present,

there is no method of directly measuring soil moisture from

space but in the longer term there will be sensors operating at

lower microwave frequencies (1.4 and 6 GHz), which can

measure soil moisture in the top 6 cm of the soil. These will

have a spatial resolution of 30–60 km, which is comparable

to the resolution of the SSM/I sensor. A comparison of the

soil moisture estimated from these sensors with microwave

emissivity estimates would contribute greatly to our under-

standing of how emissivity is affected by soil moisture on the

satellite scale and provide a means of filtering out the land

surface contribution from remotely sensed microwave radi-

ances leading improved rainfall estimates over land.
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