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                                                                Abstract 

The Convective Storm Initiation Project (CSIP) is an international project to 

understand precisely where, when and how convective clouds form and develop into 

showers in the mainly maritime environment of southern England. A major aim of 

CSIP is to compare the results of the very-high-resolution UK Met Office weather 
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forecasting model with detailed observations of the early stages of convective clouds 

and to use the newly gained understanding to improve the predictions of the model.   

 

A large array of ground-based instruments plus two instrumented aircraft, from the 

(UK) National Centre for Atmospheric Science (NCAS) and the Institute for 

Meteorology and Climate Research (IMK) Karlsruhe, were deployed in southern 

England, over an area centered on the  meteorological radars at Chilbolton, during the 

summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing 

instruments, numerous radiosondes were released at one- to two-hourly intervals from 

6 closely-spaced sites.  The Met Office weather radar network and Meteosat satellite 

imagery were used to provide context for the observations made by the instruments 

deployed during CSIP.   

 

This article presents an overview of the CSIP field campaign and examples from 

CSIP of the types of convective initiation phenomena that are typical in the UK. It 

shows the way in which certain kinds of observational data are able to reveal these 

phenomena, and gives an explanation of how the analyses of data from the field 

campaign will be used in the development of an improved very-high-resolution NWP 

model for operational use. 

 
Capsule 

 

A major international project to understand the processes responsible for the 

initiation of convective storms was held in the mainly maritime environment of 

southern England. 
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1    Introduction 

 Flooding caused by heavy rain is a problem that is motivating renewed 

research in several countries and it is a major focus for international activities such as 

the World Weather Research Program. One of the greatest uncertainties in generating 

warnings of possible flood situations is in the prediction of the local distribution and 

timing of the rain. Thunderstorms - and rain associated with deep convection in 

general - are an important ingredient in many high-impact events such as flash floods, 

but the present capability for forecasting convection is especially poor.  Such events 

are highly localized and very-high-resolution (of the order of 1 km grid) numerical-

weather-prediction models are needed to represent them.   The triggering of deep 
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convection is well understood in broad terms (e.g., Bennett et al. 2006), but not yet in 

sufficient detail to know how best to represent it within the models. A key task facing 

the meteorological community is thus to gain a better understanding of why deep 

convection breaks out precisely where and when it does and then to use such 

understanding in the development of improved NWP models.  These were the goals of 

a recent experiment in the UK known as the Convective Storm Initiation Project, or 

CSIP. 

 

            CSIP was one of three complementary field campaigns.  One of these, known 

as IHOP_2002 (Weckwerth et al. 2004), during the summer of 2002 in the U.S. 

southern Great Plains, was in a region characterized by large convective instability 

and strong capping inversions.  The local orographic variations in this region are 

small and generally not critical to the triggering of convection.  Another campaign, 

known as the Convective and Orographically Induced Precipitation Study (COPS), 

planned for summer 2007, will be in southwestern Germany / eastern France; this 

region is also characterized by large convective instability but with a major 

orographic influence.  The CSIP field campaigns during the summers of 2004 and 

2005, on the other hand, were in a region of the UK characterized by an intermediate 

level of orography  together with nearby coastlines.  The mainly maritime nature of 

the British climate and the remoteness of any major mountainous areas means that the 

convective instability and capping inversions are often quite weak on convective 

occasions.  Only one of the cases encountered during CSIP was due to convection 

originating from a layer above the boundary layer; all of the other cases were due to 

convection initiating in the boundary layer.  Elevated convective initiation events 

were much commoner in the IHOP_2002 experiment where about half the events 

were of that kind (Wilson and Roberts 2006).  
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2   Science issues addressed by CSIP 

 

 A characteristic feature of the atmosphere in situations leading to the outbreak 

of deep convection is the stable-layer phenomenon we refer to in this article as a lid.  

A lid is a layer of warm, dry air that traps air of high wet-bulb potential temperature 

(θw), usually in the boundary layer, beneath potentially colder air in the middle and 

upper troposphere. The nature of lids is illustrated by the sounding in Fig. 1.  Imagine 

a parcel of warm, moist air originating close to the surface with a θw = 14oC. If it were 

lifted moist adiabatically (along the thin curve in Fig. 1) it would be warmer than its 

environment at most levels up to 480 hPa; the dark-gray shaded area in Fig.1 is a 

measure of the Convective Available Potential Energy (CAPE). However, this 

sounding also shows a relatively dry, warm layer between 740 and 610 hPa (lightly 

shaded) where this is not so. If the parcel were lifted to these levels it would be 

negatively buoyant.  Such layers give rise to so-called Convective INhibition (CIN) 

and they act as lids that tend to inhibit the onset of deep convection. The lid in Fig. 1 

is higher than typically observed on thunderstorm days in the US Great Plains region 

where IHOP was conducted (e.g. Weckwerth et al. 2004). 

 

 A lid assists in the build-up of latent instability by allowing warm, moist air to 

be bottled-up at low levels, thereby increasing CAPE. However, to realise the 

potential for deep convection, it is necessary for the low-level air eventually to be able 

to penetrate the lid. One way to achieve this is through progressive warming and/or 

moistening of the low-level air, perhaps as part of a diurnal trend. Identifying 

precisely where the convection will initially break through is a major challenge for 

prediction. The site of the initial outbreak will be influenced partly by any spatial 
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variability in the temperature and/or humidity of the boundary-layer air, perhaps on 

scales too small to be resolved by conventional observations (e.g., Weckwerth 2000).  

Sometimes the variability is due to the effects of variable terrain height or differing 

land- (or sea-) surface characteristics, or perhaps differential shadowing by cloud at 

higher levels.  

 

 Variability in the characteristics of the boundary-layer air may not, however, 

be the sole or even the principal determinant of precisely where the first deep 

convection will break out.  The other factor that is important in the UK is variability 

in the strength of the lid itself.  This can be either intrinsic variability owing to the 

differing source regions for different parts of the lid, or local variability owing to 

some mesoscale dynamical mechanism that lifts the lid locally. Such lifting will cool 

the lid rapidly (at the dry adiabatic rate), thereby eliminating the CIN and enabling 

boundary-layer air of high θw (ascending moist adiabatically) to penetrate it. 

 

 Even a small vertical displacement of the lid may be sufficient to allow the 

underlying air to penetrate buoyantly upward. This is illustrated in Fig. 2 which 

depicts another low-CIN situation, common in a maritime climate such as the UK’s, 

in which a mere 15 hPa of lift (i.e. about 150 m) is enough to initiate deep convection. 

Sometimes the existence or otherwise of an appropriate local lifting mechanism will 

determine whether deep convection will be triggered at all: it can make the difference 

between an entirely dry day and the occurrence of a severe rainstorm.  On other 

occasions, when the diurnal warming of the boundary layer is sufficient on its own to 

initiate deep convection, although the distribution of θw within the boundary layer 

may determine broadly where the initial convection will occur, the local distribution 

in the lifting of a lid (or local variability in the strength of an unperturbed lid) will 
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often still be the key to determining precisely where and when the first convection 

breaks out. Predicting the location of the first outbreak accurately is crucial because, 

once the first convective storm has formed, secondary processes are likely to take 

over which tend to control further convective initiation in the vicinity of the storm. 

 

 It has long been recognized that local lifting often occurs in the form of 

boundary-layer convergence lines, detectable by satellite (Purdom 1982) and seen by 

radar as fine lines of enhanced reflectivity (Wilson and Schreiber 1986). Convergence 

lines were particularly common during IHOP_2002 and where they intersected with 

other convergence lines they were often preferred locations for enhanced ascent and 

convective initiation. Some convergence lines are due to topographical effects such as 

those produced by variations in terrain height or land/water boundaries. During the 

VERTIKATOR-project in south-western Germany in 2002 topographically induced 

convergence lines proved to trigger deep convection over the Black Forest mountains 

(Barthlott et al. 2006).  Others are due to variations in land-use or land-wetness, with 

associated variations in Bowen ratio (see references in Weckwerth and Parsons 2006). 

Also, under conditions of strong low-level shear, horizontal convective rolls, i.e. 

parallel lines of convergence separated by regions of divergence, oriented roughly 

along the direction of the shear, are an intrinsic dynamical feature of mixed boundary 

layers.  

 

            Triggering of deep convection that any of the above kinds of convergence line 

produce is referred to as primary initiation. Once the first storm has developed, this 

can, as already mentioned, lead to secondary initiation. The secondary initiation may 

arise from lifting by gravity waves emanating from an earlier storm or from lifting 

along its rain-chilled outflow (gust front) as it advances like a density current.  
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According to Wilson and Roberts (2006), just over half the convective-storm 

complexes, probably most of the cases with surface-based convection,  associated 

with initiation episodes in IHOP_2002 produced gust fronts. Most of the long-lived 

events were associated with gust fronts. 

 

 Lifting can also result from ascent induced beneath travelling positive 

anomalies in potential vorticity occurring at upper levels. These PV anomalies are 

associated with tropopause depressions or folds (Hoskins et al. 1985). Such PV 

anomalies are often encountered in Europe and presumably in other middle or high 

latitudes and their influence on precipitation has been examined, for example, during 

the Mesoscale Alpine Programme (MAP; Bougeault et al. 2001). They are especially 

important because, as well as reducing the CIN through the induced lifting, they also 

increase the CAPE owing to the pool of cold air at middle and upper levels that 

always accompanies them. 

 

 In the remainder of this article we shall (i) provide an overview of the CSIP 

field campaign, (ii) present examples from CSIP of the types of convective initiation 

phenomena that are typical in the UK, showing the way in which certain kinds of 

observational data are able to reveal these phenomena, and (iii) explain how the 

analyses of data from the field campaign will be used in the development of an 

improved very-high-resolution NWP model for operational use.  A large database has 

been accumulated from CSIP.  Analysis is still at an early stage and the material 

presented here is intended to provide an overview of important processes, and of 

opportunities for improving forecasting models, rather than to give definitive results. 

 

3    The CSIP field campaign 
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 The main field campaign was conducted over southern England during June, 

July and August 2005. It benefited from an earlier pilot campaign in the same region 

in July 2004. An overview of the observational set-up is given in Fig. 3.  The 

Operations Centre was based at Chilbolton (at the centre of the range rings in Fig. 3). 

This is the site of the  Chilbolton radar facility with its 25-m steerable dish (Goddard 

et al. 1994).  Other instruments were sited within range of the Chilbolton radars as 

shown in Fig. 3. Many of them were new or upgraded systems operated as part of the 

recently established (UK) Universities Facility for Atmospheric Measurement 

(UFAM) by staff from the Universities of Aberystwyth, Leeds, Manchester, Reading 

and Salford. The others were state-of-the-art instruments from the Institute for 

Meteorology and Climate Research (IMK), Karlsruhe, Germany, the Rutherford 

Appleton Laboratory, the Met Office. GFZ - Potsdam, and the University of Bath. 

 

The observations 

 

The set of instruments deployed in southern England for CSIP included 

 

• 1275 MHz (L-band), 3 GHz (S-band) and 35 GHz Doppler radars 

at Chilbolton (the 3 GHz radar is also a polarization radar) 

• UHF wind profiler 

• 3 Sodars 

• 2 Doppler lidars 

• Ozone lidar 

• Water vapor lidar 

• 3 microwave radiometers 
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• Ceilometer 

• Serial ascents at 1 to 2 h intervals from 6 mobile rawinsonde stations, 

plus serial ascents from 3 UK Met Office operational systems (giving a 

total of about 800 soundings associated with CSIP) 

• Network of 16 automatic weather stations 

• 2 instrumented light aircraft (DO 128 and Cessna 182) 

• Network of 5 GFZ GPS integrated water vapor stations 

• 2 energy-balance stations 

 

These instruments were within a region of good coverage by the Met Office network 

of surface stations and the UK operational weather radar network, which provided  

maps of estimated rainfall intensity at resolutions mainly between 1 and 2 km every 5 

min for single radars and every 15 min for composite displays. Extensive use was 

made of infrared, water vapor and high-resolution visible imagery every 15 min from 

Meteosat 8, the Meteosat Second Generation (MSG) satellite (Schmetz et al. 2002) 

and every 10 min from Meteosat-6. These products were used not only for post-storm 

analysis, but also for nowcasting to guide deployment of aircraft and serial 

rawinsondes. Hourly surface-wind and convergence analyses from the Met Office 

NIMROD system (Golding 1998) were also used for this purpose. 

 

Forecasting products 

 

The most useful products for forecasting convection initiation were those 

derived from the operational mesoscale version of the Unified Model (Cullen 1993) 

which was run every 6 h out to T+36h on a 12-km grid. These runs were 

supplemented by special runs from a 4-km version of the Unified Model being 
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developed by Met Office staff at the Joint Centre for Mesoscale Meteorology 

(JCMM) at the University of Reading. An example of these products is shown in Fig. 

4. Figures 4(a) and 4(b) depict the T+13h forecasts of rainfall intensity in the CSIP 

operating area on 29 June 2005, from the 12- and 4-km versions of the model, 

respectively. Figure 4(c) depicts the corresponding observed pattern of rainfall 

obtained by the weather radar network. 

 

 Both models use the new non-hydrostatic, fully compressible deep 

atmosphere dynamical core (Davies et al. 2005). The 12-km model uses a 3-hour, 3D-

VAR data assimilation cycle (Lorenc et al. 2000) supplemented by assimilation of 

cloud and radar-based rainfall information using nudging techniques (Jones and 

Macpherson 1997). It provides a well-proven mesoscale background but uses a 

parameterization of deep convection based on Gregory and Rowntree (1990). 

Essentially it is an equilibrium mass-flux scheme, tending to respond to CAPE, and it 

gives only a general indication of areas where convection is possible, with little fine-

scale detail. The 4-km model, run one-way nested within the 12-km model and using 

the same initial conditions, follows its mesoscale evolution closely but benefits in two 

ways. First, it resolves surface forcing and resulting flow much better, and so often 

provides better guidance as to the areas where surface-forced initiation is most likely. 

Second, while the mass-flux parameterization is still used, its mass-flux is limited in 

such a way as to ensure that deep convection is treated largely explicitly. Although a 

4-km grid is not ideal, it has been shown to behave adequately when compared with 

1-km versions of the same model in cases of intense convection. In particular, 

mechanisms leading to mesoscale organisation are captured quite well. The 

inadequate resolution does tend to lead to a delay in initiation of order an hour, but 

spatial guidance is often superior to that from the 12-km model. 
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Another useful product for forecasting convective initiation obtained from the 

operational run of the mesoscale model that we wish to highlight was a time-height 

plot of forecast θs, or saturation potential temperature, above the lifting condensation 

level. θs is the dry-bulb temperature read off on the θw scale as though the air were 

saturated. The plot has the advantage of showing at a glance the expected evolution of 

layers of CAPE and of CIN (i.e. lids) with respect to any parcel value of θw. An 

example is given in Fig. 5. The upper panel of Fig. 5 shows a lid with θs up to 17oC 

just above the lifting condensation level (white curve) at heights between 1 and 2 km 

from 1530 to 2100 UTC (on Day 1). Predicted surface values of θw, plotted along the 

bottom of the lower panel, were not quite high enough during this period for parcels 

to penetrate the unmodified lid, although the predicted maximum surface value of θw 

at 1600 UTC (16.7oC) would have produced parcels with a 1oC temperature excess at 

the 4-km level if they could have penetrated the lid. In the event, low-level 

convergence is believed to have lifted (and hence weakened) the lid locally and 

allowed convection to penetrate upward to 6 km at around 1700 UTC.  Illustrations of 

this kind of behavior are shown below. 

 

 

4    Observing the pre-storm lids and convective elements 

       

        

       CSIP is concerned specifically with initiation of convection and so it was 

important to be able to observe the detailed structure of the pre-storm boundary layer, 

of the lid (or lids) capping it, and of convective elements (clear-air thermals, fair- 

weather cumulus and cumulus congestus) before, during and just after they penetrated 
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the lid.   Thermodynamic information on the structure of the boundary layer and lids 

is available in CSIP from the serial rawinsondes and aircraft traverses. This 

information is supplemented by data from the 3 GHz and 1275 MHz high-power 

radars at Chilbolton. As shown in the following example, these radars provided 

important information on the nature and detailed pattern of the pre-storm boundary 

layer, lids, and convection on scales of tens of kilometres down to hundreds of metres. 

 

 Two kinds of scattering mechanisms are involved in the detection of the above 

features by radar. Echoes from the edges of convective elements are generally due to 

Bragg scattering from refractive index inhomogeneities, mainly from humidity 

gradients (Doviak and Zrnic 1993).  Echoes in the interiors of convective elements are 

more often due to Rayleigh scattering from large cloud particles, precipitation or 

perhaps insects. Layer echoes can be due to Bragg scatter or Rayleigh scatter from 

insects. The 3 GHz and 1275 MHz radars are mounted on the same dish and are 

operated at the same time. Having data simultaneously from the two radars is 

beneficial in that the different wavelength dependency of Bragg and Rayleigh 

scattering helps clarify the nature of the targets (scattering by refractive index 

inhomogeneities  is favored at 1275 MHz compared to 3 GHz). 

 

 Figure 6 shows examples of RHI scans from the 3 GHz radar. Figure 6(a) 

depicts a layer of low-reflectivity echo from the bottom of a lid above a cloud-free 

boundary layer prior to the development of significant convection beneath it. Figure 

6(b) depicts echoes not only from a lid some way above the boundary layer but also 

from the edges of clear-air thermals and fair-weather cumulus clouds as the top of the 

convective boundary layer began to rise up toward the lid.  
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             Figure 7 shows another RHI scan from the 3 GHz radar but this time it shows 

differential reflectivity (ZDR)1 rather than reflectivity (Z). It depicts in green the 

echoes from the edges of large cumulus congestus clouds as well as from the 

precipitation particles developing within them.  However, unlike in all the other cases 

during CSIP, where the convection originated from the boundary layer, the 

convection here was occurring in the form of elevated convection from air being 

advected above a stable frontal zone that is depicted by multiple red/maroon echo 

layers.  Here the lid that would previously have restrained the convection is no longer 

evident. The lid would have been situated at the top of the boundary-layer air before it 

was advected from France and lifted above the frontal zone. 

 

 The fact that Fig. 7 depicts ZDR rather than Z explains why the echoes from 

the convective cells are so easily distinguishable from the layer echoes within the 

stable frontal zone (i.e. green versus red/maroon). The green echoes have low values 

of ZDR typical of both Bragg scattering from refractive index inhomogeneities at the 

edges of the convective cells and of Rayleigh scattering from newly developing 

precipitation. The red/maroon echoes were probably due to elongated insects advected 

within the frontal zone.   

 

            Figure 8, an RHI scan from the 1275 MHz radar, shows an example of the 

radar signature of cumulus congestus clouds. It depicts the reflectivity from two such 

clouds, each 3 km high, that had only recently penetrated a lid capping the boundary 

layer at about 1 km (Morcrette et al. 2006). In the case of the cloud at 18 to 20 km 

range, the radar detects just the Bragg scatter from the refractive index 

                                                 
1 Differential reflectivity (ZDR) is the ratio between the horizontal and vertical received power and is 

thus a measure of the oblateness of the scatterers. 
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inhomogeneities at the cloud boundaries. In the case of the cloud at 10 to 13 km range 

it may be detecting also the Rayleigh scatter from precipitation particles developing 

within it; alternatively it may be seeing mainly Bragg scatter, but from the edges of a 

cluster of smaller sub-cells. The breakthrough of convective cells above the lid, as in 

Fig. 8, often occurs where the lid is lifted locally by some mesoscale mechanism; 

examples of these mechanisms are presented shortly. 

 

 We suspect that mesoscale lifting processes are the mechanism responsible for 

localizing the initiation of convection on the majority of occasions; however, 

convective break-through can in principle be localized even without local lifting 

provided the lid is weak and there are significant local hot spots or moist anomalies 

within the boundary layer.  Thus before proceeding to look at the mesoscale lifting 

mechanisms, we shall present one more radar product used in CSIP – one that can 

reveal the mesoscale variability in the structure on a roughly horizontal plane within 

the boundary layer itself.  Figure 9 shows the near-surface refractivity (N) field 

derived from the 1275 MHz radar using the technique pioneered by Fabry et al. 

(1997). The technique utilises the change in phase of radar returns from ground 

targets relative to a reference scan. The reference scan was chosen to correspond to a 

near-constant refractivity field as determined by observations from the 16 automated 

weather stations surrounding Chilbolton. During summer, day-time conditions, the 

refractivity field is primarily influenced by variations in humidity, where a change of 

1 unit corresponds to a change in relative humidity of approximately 1%. Although 

limited mainly to ranges within 30 km of the radar at Chilbolton, the technique 

provides valuable insight into scales of variability not easily resolved by the in situ 

measurements. Figure 9 shows a large gradient in refractivity just to the north-west of 

the radar (at Chilbolton), corresponding to a relative humidity gradient of 
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approximately 10%. A corresponding gradient in moisture was detected by 

radiosondes released from Chilbolton and Larkhill, 25 km west of Chilbolton. 

Satellite pictures showed that convective clouds developed in the moist region.  

 

 5   Observing the mesoscale forcing mechanisms within the boundary layer 

 

Localized lifting is usually the key to determining precisely where and when 

convection will be triggered  Our belief that local variability in boundary-layer 

moisture plays only a secondary role to mesoscale lifting processes in localizing 

convective initiation is in line with the analyses of IHOP_2002 data by Fabry (2006). 

A variety of types of mesoscale forcing were observed during the 18 Intensive 

Observing Periods (IOPs) of  the main 2005 field campaign.  Some examples are 

presented below from these IOPs and also from one of the cases observed during the 

2004 pilot project. Three of these examples illustrate forcing from low levels and two 

illustrate forcing from upper levels. 

 

 

Examples of boundary-layer forcing 

 We first present examples of primary initiation along convergence lines within 

the boundary layer. Figure 10 is a visible satellite image showing clouds along a 

convergence line that trailed persistently downwind from the south coast of south-

west England. An RHI scan across this line (Fig. 11) illustrates the effects of the 

convergence. The reflectivity plot in Fig. 11(a) and the ZDR plot in Fig.11(b) both 

show two clear-air layers as well as one of the shower clouds that formed along the 

convergence line (at 53 km).  Most of the echo in the ZDR plot – both layer and 

convective echo - is probably due to Bragg scattering, i.e. low ZDR (green); however, 
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the low-ZDR echo at the top of the shower cloud may be due to ice particles above 

the 3-km 0 degC level and the higher-ZDR echo coinciding with the reflectivity core 

is due to rain (produced, at least in part, from melting ice rather than from the warm-

rain process alone). The undulating echo ‘layer’ around 1 km, detectable from 

minimum range out to 50 km, is not so much a layer as an envelope of small 

convective elements in the boundary layer. Above this, there is another, somewhat 

smoother echo layer at about 2 km that rises to over 2.5 km beyond 40 km, reaching a 

peak where the main shower cloud is developing. This echo layer corresponds to the 

base of the major lid at 750 hPa seen in the sounding in Fig. 1. The small shower 

cloud and the locally raised lid are both manifestations of the convergence line.  

 

 A second example of primary initiation is given in Fig. 12 which shows 

convective cloud streets along boundary-layer convergence lines (horizontal 

convective rolls) almost parallel to the strong low-level wind. The clouds (Fig. 12(a)) 

formed as the airflow progressed inland into southern England. They started to 

develop in the early morning and by midday they were deep enough to produce some 

heavy thunderstorms (see the radar-network display in Fig. 12(b)). (About an hour 

later, one of these storms became sufficiently intense to produce an F2 tornado.)  The 

spacing of the shower lines is due to an intrinsic dynamical organization but further 

study of this dataset may indicate the extent to which the shape of the coastline, areas 

of modest hills, or other factors, may have assisted some of the shower lines to 

become more intense than others.  

 

 Figures 10 to 12 were given as examples of primary initiation. Next, in Figs. 

13 to 17, we give examples of forcing in which a previous convective storm  leads to 

the initiation of secondary convection. 
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            The visible satellite image in Fig 13 shows an arc of convective cloud to the 

south-east of Chilbolton over the English Channel.  At the time of Fig. 13, the Met 

Office network radar showed that a line of new convective showers was developing 

along this arc (not shown). The arc had formed along the gust front, or leading edge of 

a cold pool, due to the rain-chilled downdraft from an earlier mesoscale convective 

system that had formed on the western side of the CSIP area and drifted eastward.  

Data from the AWSs showed that a temperature drop of up to 8 C accompanied the 

passage of the gust front. Purdom (1982) showed that such visible satellite imagery is 

useful for identifying this important class of convergence line.  The convergence at 

the gust front showed up as a velocity discontinuity on the Doppler radar PPI display -

-see the arc-shaped transition from green, through yellow, to red (in Fig.14(b)) at the 

leading edge of the main storm area in Fig.14(a).   

 Sometimes such a gust front shows up as a radar fine line as in Fig.15(a). The 

reflectivity pattern in this figure shows two clusters of convective showers, with a fine 

line 10 to 20 km ahead of them. The ZDR pattern in Fig. 15(b) shows the same 

shower systems (mainly green) at an earlier time, along with the outflow boundary to 

the east of one of them, characterized by a transition from red to green.  Our working 

hypothesis is that the large values of  ZDR in the red regions are due to insects in the 

unperturbed boundary layer whereas the low values of ZDR in the cold pool are from 

Bragg scattering in the relatively insect-free air of recent downdraft origin. 

 

 In another example of secondary initiation, a series of parallel lines of 

convective showers and thunderstorms developed (Fig. 16); the lines were transverse 

to the overall wind direction. Detailed observational and theoretical analyses 

(Morcrette et al. 2006; Marsham and Parker, 2006) indicated that these lines of 
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showers were triggered by gravity waves emanating from an earlier storm  forming 

upwind of the CSIP area.  Radar scans showing the top of the boundary layer were 

made with the 1275 MHz Chilbolton radar at a number of azimuths before and during 

the development of these storms. These scans were analysed so as to map the depth of 

the boundary layer out to a radius of about 30 km from Chilbolton (Fig. 17). A time 

series of plots like Fig. 17 indicated that the top of the boundary layer was modulated 

by a traveling gravity wave with wavelength 40 to 50 km and amplitude of the 

vertical air-parcel displacement of ± 150 m. The vertical sounding for this occasion 

was shown earlier in Fig. 2(a) and the accompanying Fig. 2(b) showed that a gravity 

wave capable of lifting the lid capping the boundary layer by a mere 150 m would 

indeed have been sufficient to enable convection to break through.  

 

Examples of forcing from upper levels 

 

 The passage of upper-tropospheric PV maxima is the principal forcing 

mechanism from upper levels. A study by Roberts (2000) has shown that mesoscale 

PV maxima are abundant and are associated with a large proportion of the 

thunderstorms encountered in the north-east Atlantic area and in the more maritime 

parts of north-west Europe. The PV maxima are important for convection because of 

the associated patterns of advection and vertical motion. Advection of cold air into the 

upper and middle troposphere increases the CAPE and the ascent weakens the lid, i.e. 

reduces CIN. Because the cold air is also very dry it is often easily detected in satellite 

water vapor imagery and gives rise to the familiar water vapor (WV) dark zone 

(Browning, 1997). The analysis of WV imagery formed the basis of Roberts’ analysis. 

An example from CSIP is given in Fig. 18 which shows a WV dark zone centred over 

central England. In the middle of the dark zone (due north of the Isle of Wight and 
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east of south Wales) is a very small gray dot which corresponds to an isolated 

thunderstorm. This storm occurred on the occasion depicted in Figs. 10 and 11. 

Detailed analysis shows it to have been due to the combined effects of the upper-level 

PV maximum and the coastally induced low-level convergence line discussed earlier 

which on its own produced only shallow convective showers.  

 

 The final example of an upper-level influence on convective initiation is 

shown in Fig. 19. Figure 19(a) shows a Eumetsat cloud-height product diagnosed 

from MSG satellite infrared channels. Figure 19(b) shows the corresponding visible 

image and Fig. 19(c) shows the radar network display for the same time. Orphaned 

anvils from decayed thunderstorms that had traveled northward from France are 

shown orange in Fig. 19(a); they appear as fuzzy light gray veils in Fig. 19(b). The 

shadowing from these anvils is thought to have slowed down the diurnal heating of 

the boundary layer very slightly, but just enough to account for the first deep 

convective cells being initiated outside or on the boundaries of the shadowed areas. 

The deep convective cells show up as bright clouds on the visible image (Fig. 19(b)).  

A few of these clouds were already developing into showers at this time (Fig. 19(c)) 

and some of them developed into thunderstorms that produced flash floods. 

 

6    Using CSIP results to develop a high-resolution NWP model 

 

 The 4-km model discussed above is an intermediate step toward a nowcasting 

NWP system under development within JCMM which aims to produce very-short-

range forecasts (0-6 h) using an NWP system based on a version of the Unified Model 

with horizontal resolution around 1 km. The performance of such a system can 

loosely be considered to depend on performance at three separate scales.          

21 



 

            At the coarsest scale, the synoptic and mesoscale events determine the overall 

region where convection may occur. In practice, such regions are represented well by 

the current generation of operational NWP system. However, analysis errors are still 

present for important features such as small (~50 km) upper-level PV anomalies or 

low-level areas of enhanced moisture due to inadequacy of observations or the 

methods used to assimilate them.    

 

          Within this general region, there may be areas where instability triggers 

preferentially. As discussed above, these areas may be convergence lines due to 

surface forcing (e.g. sea-breezes) or due to previous storm outflows, or more two-

dimensional regions due to other mechanisms. It is important to understand the 

mechanisms responsible for these areas so that the NWP model system can be 

designed to represent them accurately. For example, the representation of stable ‘lids’ 

is likely to depend on vertical resolution, while the representation of surface-forced 

convergence lines may depend on surface orography, sea- and land-surface 

temperatures and hence surface exchange processes. On the other hand, the 

development of convergence lines from storm downdrafts depends on the treatment of 

cloud dynamics and microphysics, as well as boundary-layer processes. The CSIP 

data are being used to validate and optimise the model formulation as well as to 

investigate the predictability of storms in the presence of different initiation 

mechanisms. This is important as many of these mechanisms operate before 

significant precipitation is observed by operational radar systems, and knowledge of 

them can help in the design of observing and assimilation systems. 
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          On the smallest scale - within, for example, mesoscale convergence lines -    

individual storm cells develop. It is extremely unlikely that the location of such cells 

is generally predictable even within a very-high-resolution model. In a model with 

~1-km resolution, cells develop from features (such as small cumulus clouds) that are 

not represented in the model.  In practice, we find that the model behavior in 

generating individual cells depends critically on the representation of turbulence and 

its interaction with model dynamics, and that existing techniques require 

improvement. Two (related) approaches are conceivable. First, the transition from 

unresolved turbulence to explicit cells may be treated via ‘stochastic backscatter’, i.e. 

adding a well defined random component to  physical  parameterizations in the model. 

Second, understanding of these upscale transport mechanisms may enable new 

observing techniques (such as clear-air radar) to be used to detect regions that may 

develop into cells and thus modify the model state with sufficient lead-time to 

produce useful forecasts of subsequent precipitation. The CSIP data are providing a 

valuable source of validation data to improve our representation of these 

parameterization and assimilation issues.  

 

           Figure 20 shows an example of modelling progress so far for one of the cases 

discussed above (see Figs. 13 and 14). The figure shows a representation of 

broadband IR radiance temperature and surface rainfall rate from a 1.5-km, 76-level, 

model compared with MSG satellite IR radiance temperature and analysed  radar 

rainfall using the NIMROD system. Figure 20(a) is a T+6.5 forecast, and it is notable 

that the organised area of showers over southern England is quite well forecast, if a 

little too far to the east. The role of the west coast is also clear in the forecast from the 

cloud streets that originate at or near the coast. Although their presence in 

observations is not obvious from the IR image in Fig. 20(b), which struggles to 
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resolve them, the visible MSG image in Fig. 13 hints at them and an even higher-

resolution visible MODIS image (not shown) depicts them very clearly. 

 The Convective Storm Initiation Project (CSIP) was an international field 

campaign designed to observe the processes responsible for the initiation of 

convection in the UK.  It was highly successful and provided unparalleled 

observations with which to understand and quantify these processes. Real progress is 

being and will continue to be made on improving forecasts of convective storms as a 

result of CSIP. 
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Figure Captions 
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Figure 1: Tephigram for radiosonde launched from Bath at 1100 UTC on 15 June 2005 (IOP 1).
The CAPE and CIN are shaded dark and light gray, respectively; the thin solid line partially
bounding these areas is the 14C saturated adiabat representing a parcel that ascends unmixed
from the boundary layer.
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Figure 2: Illustration of how adiabatic lifting of a profile by as little as 15 hPa (about 150 m),
can increase the CAPE and completely eliminate the CIN. The original profile is shown on the
left and the lifted profile on the right. (Adapted from Morcrette et al. 2006 ).
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Figure 3: Map showing locations of instruments deployed in southern Britain during CSIP
in June, July and August 2005. The shaded circles represent the position of the Automatic
Weather Stations (AWSs).
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Figure 4: Example of a 13-h precipitation forecast from the Met Office Unified Model run using
(from left to right) (a) a 12-km grid and (b) a 4-km grid, compared with (c) the rainfall rate
observed by the weather radar network at 1300 UTC on 29 June 2005 (IOP 5). Key gives
rainfall intensity in mm h−1.
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Figure 5: Met Office 12-km-grid Unified Model forecast of the time-height cross-section of θs

over Larkhill (see Fig. 3 for location) on 11 August (IOP 14R) and 12 August 2005. The white
line in the upper plot shows the lifting condensation level; above this the contours and shading
represent θs and below they represent θ. (Surface values of θ are specified along the time axis
of the upper plot). The lower plot shows θw.
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(a)

(b)

Figure 6: Two examples of RHI scans of reflectivity (dBZ) from the 3 GHz radar at Chilbolton
showing lids and the outline of thermals: (a) echo from the bottom of a lid without significant
convection beneath it; (b) thermals in the boundary layer below the bottom of a lid (at 1125
UTC on 18 July 2005 (IOP 9) and 1011 UTC on 29 June 2005 (IOP 5), respectively).
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Figure 7: RHI of differential reflectivity (ZDR), from the 3 GHz Chilbolton radar, at 1249 UTC
on 24 June 2005 (IOP 3), showing elevated convective cells forming above a stable frontal zone.
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Figure 8: RHI of reflectivity (dBZ) from the 1275 MHz Chilbolton radar at 0928 UTC on 10
July 2004, showing developing cumulus congestus clouds. The echoes near the ground are a
combination of ground clutter and returns from insects. (From Morcrette et al. 2006).
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Figure 9: Refractivity field obtained from the 1275 MHz Chilbolton radar at 1259 UTC on
13 July 2005 (IOP 8), using the technique described by Fabry et al. (1997). In summer, the
changes in refractivity are mainly due to humidity variations. Here, a change in refractivity of
1 N is approximately equal to a change in relative humidity of 1%.
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Figure 10: High-resolution visible image from Meteosat-8 (MSG) at 1200 UTC on 15 June
2005 (IOP 1), showing convective cloud along a convergence line extending from the south
coast toward the north-east. Range rings are centered on Chilbolton and plotted every 25 km.
The radial lines correspond to azimuths with low horizons along which series of RHI scans were
obtained.
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(a)

(b)

Figure 11: RHIs of (a) reflectivity (dBZ) and (b) differential reflectivity (dB) for a scan across
the convergence line shown in Fig. 10, obtained from the 3 GHz Chilbolton radar at 1200 UTC
on 15 June 2005 (IOP 1).
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(a)

(b)

Figure 12: (a) High-resolution visible image from Meteosat-8 (MSG) and (b) rainfall rate from
the radar network (key in mm h−1) at 1215 UTC on 28 July 2005 (IOP 12), showing convective
cloud streets and associated thunderstorms. Range rings are centered on Chilbolton and plotted
every 25 km.

12



Figure 13: Similar to Fig. 10, but for 1400 UTC on 25 August 2005 (IOP 18), showing an arc
of convective cloud along a gust front to the SE of Chilbolton over the English Channel.
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(a)

(b)

Figure 14: Example of a cold-pool-outflow convergence line: PPIs at 0.5 deg of (a) reflectivity
(dBZ) and (b) unfolded Doppler velocity (m s−1 away from radar) at 1157 UTC on 25 August
2005 (IOP 18) showing the relation between convergence features and the precipitation field.
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(a)

(b)

Figure 15: PPIs at 0.5 deg of (a) reflectivity (dBZ) at 1701 UTC and (b) differential reflectivity
(dB) at 1622 UTC on 18 August 2005 (IOP 16), showing a radar fine line associated with a
gust front.
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Figure 16: Rainfall rate (mm h−1) over a 150 km x 150 km region of southern England at 1130
UTC on 10 July 2004, showing a series of precipitation bands that had been triggered by a
gravity wave generated by an earlier storm. (From Morcrette et al. 2006).
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Figure 17: Height of boundary-layer top (hundreds of meters), with interpolated heights shown
in color (according to the key, in meters) as derived from ten RHI scans with the 1275 MHz
Chilbolton radar. The variation in height is believed to be due to the gravity wave that triggered
the precipitation bands in Fig. 16. The scans were obtained from 0751 to 0807 UTC and their
positions have been displaced to correspond to 0758 UTC assuming a system velocity of
8 m s−1 from the west. (From Morcrette et al. 2006).

17



Figure 18: Rapid-scan Meteosat water-vapor image at 1200 UTC on 15 June 2005 (IOP 1),
showing a thunderstorm (very small gray dot) within a water vapor dark zone. The image is
enhanced to clarify the position of this thunderstorm with respect to the dark zone; although
the surrounding white areas are saturated, there is no information in these areas relevant to
the discussion. Because the thunderstorm was shallow, it does not show up as a major feature
in the water vapor imagery which is sensitive mainly to features in the upper troposphere.
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(a) (b)

(c)

Figure 19: (a) Cloud-top height (m) derived from MSG infra-red data, (b) MSG high-resolution
visible image and (c) radar-network rainfall rate, at 1300 UTC on 29 June 2005 (IOP 5),
showing the possible effect of shadowing by cirrus anvils on the formation of new convective
clouds. Range rings are centered on Chilbolton and plotted every 25 km.
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(a) (b)

Figure 20: (a) Unified Model 6.5-hour forecast of broadband IR radiance temperature and
surface rainfall rate compared with (b) observational analysis showing NIMROD-derived rainfall
rate (colors) superimposed on IR satellite-derived cloud (white), at 1230 UTC on 25 August
2005 (IOP 18).
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