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Abstract 
 

Ground-based microwave radiometry now offers an opportunity to automate upper air 

observations by providing information on temperature and humidity profiles to Numerical 

Weather Prediction (NWP) with high time-resolution, but poor vertical resolution. Channels 

near the 60 GHz oxygen complex are used to sound temperature, while channels near the 

22.235 GHz water vapour line are used for humidity, but are also sensitive to the integrated 

liquid water content. 

 

A one-dimensional variational (1D-VAR) technique is developed to retrieve temperature and 

total water profiles by combining radiometer and surface observations with NWP background. 

This provides more accurate a priori information than the statistical climatology used by a 

neural network retrieval technique. The variational retrieval requires specification of a forward 

model and error covariances of the observations and background. The radiometric noise and 

calibration stability of a commercial system, the Radiometrics TP/WVP-3000, are analysed.  

 

Case studies show this instrument can resolve basic features of the convective boundary 

layer and monitor the evolution of near-surface inversions, but not detailed features. They 

also illustrate the constraints imposed by background data: neural network retrievals being 

biased when applied outside the training data set’s range, and variational retrievals’ inability 

to move poorly forecast inversions. 

 

Temperature profiles retrieved by 1D-VAR have an accuracy of <0.5 K below 1 km and 

<1.0 K below 4 km, providing ≈3 Degrees of Freedom for Signal (DFS), which can be 

improved to ≈5 by adding observations at more angles and reducing their noise. However, the 

humidity profiles’ accuracy (<20% below 1 km, <40% below 4 km) falls short of the 

requirements for regional NWP and only provide ≈2 or 3 DFS in clear or cloudy conditions, 

respectively – little more than surface and GPS sensors in clear skies. This shows radiometer 

observations can improve NWP temperature background to the required accuracy below 

~3 km. 
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"Never trust anything that can think for itself if you can't see where it keeps its brain."  
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 “Clouds give you a headache” 
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Chapter 1 Introduction 

Can ground-based microwave radiometers provide useful data on 

atmospheric temperature and humidity profiles? 

That is the basic question asked in this thesis. To begin to answer it, this introduction will first 

consider the requirements for temperature and humidity profiles for different applications and 

how these are currently being addressed. The microwave radiometer will then be introduced, 

along with the theoretical basis for deriving profiles from its observations. This thesis 

assesses the accuracy of the radiometer’s observations and the profiles retrieved from them. 

1.1 Motivation 
Knowledge of the vertical profile of temperature, humidity and cloud is key in determining the 

basic thermodynamic state of the atmosphere, which, in turn, is key to producing accurate 

weather forecasts. Together these variables define the static stability and convective inhibition 

introduced by temperature inversions, which determine the vertical transport of heat, moisture 

and momentum between the surface, boundary layer and free troposphere. These processes 

are of primary interest on meso- and convective- scales (2-2000 km and <2 km, respectively). 

Observed profiles are used in a number of ways in weather forecasting, both in Numerical 

Weather Prediction and nowcasting applications.  

1.1.1 Numerical Weather Prediction 

Numerical Weather Prediction (NWP) is used to forecast weather, based on a 4-dimensional 

computer model of the state of the atmosphere. The model represents atmospheric variables 

on a discrete grid and applies a set of equations to determine how these evolve over discrete 

time steps. NWP models often have biases, which require human intervention and 

interpretation to remove these from forecasts prior to dissemination. Improved horizontal 

resolution allows smaller scale atmospheric process to be resolved and better representation 

of orographic influences, although they can only accurately represent the propagation of 

features with wavelengths 3-4 times their grid spacing. However, it requires shorter steps and 

much greater computer time, which imposes a practical restriction on the models’ domain size 

and, consequently, the time range of its forecasts. 

 

The Met Office run a series of versions of its Unified Model (UM) routinely for different 

applications. The Global version is run every 6 hr with a horizontal resolution of ~40 km and 

forecast out to 5 days (T+120 hr) every 12 hr. The Global model provides boundary conditions 

for regional versions, such as the North Atlantic-European mesoscale model, which covers a 

limited area at higher resolution (~12 km), but to a shorter range (T+36 hr). This study uses 

the Mesoscale version of the UM as it ran operationally in 2002-2005. This covered an area of 

~1740 x 2172 km around the British Isles at 12 km resolution and was run every 6 hr to 
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forecast to T+36. (It has since been superseded by a 4 km version of the model.) Versions of 

the UM with coarser resolution are run less frequently for longer-range and seasonal 

forecasts and climate modelling. All versions used 38 vertical levels during this period. 

 

NWP models are initialised by constructing a best estimate of the true state of the 

atmosphere to fit all available observations, known as an analysis. Modern data assimilation 

schemes continuously adjust NWP models as a compromise between the a priori model state 

and the observations to allow asynchronous observations to be exploited optimally. These 

techniques are described in more detail below. 

 

Ground-based microwave radiometers are not currently used operationally in NWP – their 

potential is investigated in this thesis. 

1.1.2 Nowcasting 

The application of NWP is limited at short time ranges because of the finite time needed to 

initiate the model. On time scales less than ~6 hr, features in high resolution observations can 

be exploited by Nowcasting techniques. These typically extrapolate the current situation 

based on the expected trend over the next few hours. For example, frontal rainbands may be 

advected based on their motion observed by weather radars and model forecast winds. 

Nonlinear processes are more complex – forecasters may monitor the development of profiles 

to adjust the timing of predictions of convection onset or fog clearances.  

 

Troitsky et al. [1993] illustrated a simple example of a nowcasting application of ground-based 

microwave radiometer: by monitoring the temperature profiles retrieved from observations at 

high time-resolution, the user is able to issue warnings when inversions are developing to 

assess the risk of pollution being trapped at the surface because of inefficient dispersion. 

1.1.3 Other applications 

Observed profiles are also used in atmospheric research to improve the understanding of 

atmospheric processes. In turn, these studies can improve the representation of these 

processes in NWP models – especially the parametrization of sub-gridscale processes.  

For example, time series of temperature profiles retrieved from a ground-based microwave 

radiometer have been used to study the influence of an urban heat island on the boundary 

layer by Golitsyn et al. [2002]. They found nocturnal inversions formed less frequently in the 

centre of Moscow, were weaker, formed much later and dissipated earlier than in nearby rural 

areas. The boundary layer was usually found to be warmer up to 500-600 m in the city centre 

than the suburbs, although occasionally a relatively cool layer formed here above 300 m.  

 

Longer time series of observations can be used to monitor and understand climate change.  
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1.1.4 The Current Upper Air network 

Microwave radiometers have the potential to provide data on temperature and humidity 

profiles for the above applications, as part of a network of upper air observations. The 

components of the current operational network are reviewed below. The desire to reduce the 

ongoing costs and manpower requirements of the upper air network makes it attractive to 

investigate the potential of remote sensing systems that can be automated and require little 

manual intervention or consumable items. 

 

Historically, radiosondes have formed the backbone of the world’s upper air observations. 

Typically launched 1-4 times a day, they are capable of measuring profiles of pressure, 

temperature, humidity and horizontal wind vector from the surface to 20-30 km at high vertical 

resolution (~10 m). However, there are considerable costs involved with maintaining the 

radiosonde network – both in consumables and manpower to launch and quality control their 

data. To reduce these costs, the operational radiosonde network in the UK was recently 

reduced to 6 stations, launching balloons twice daily. This includes four autosonde stations, 

which only require restocking every 24 launches, but still require some manual quality control. 

This network represents an average spacing between radiosondes of ~250 km (based on the 

UK land area of 244,820 km2), with an average interval between soundings of 12 hr. 

 

The radiosonde network is supplemented by 6 wind profiling radars, which currently provide 

profiles of horizontal wind vectors. The potential to exploit their information on the humidity 

structure is an active area of current research (see §7.2.4). 

 

Commercial aircraft of participating fleets now also provide temperature profiles on ascent or 

decent into certain airports. Their distribution is limited in space, and particularly, time, due to 

limitations on night flying. Currently typical horizontal sampling is comparable to the current 

UK radiosonde network, but with more frequent profiles available during daytime (~6/day) 

albeit with slightly lower accuracy and vertical resolution [Stringer, 2006]. Although the current 

E-AMDAR systems do not include humidity sensors, these are under development [Petersen 

and Moninger, 2006]. 

 

Satellite sounders have come to be one of the most important sources of upper air 

observations for NWP [Böttger et al., 2004]. Although polar-orbiting satellites can provide 

global coverage, each satellite typically only samples any one location twice a day. There are 

currently 3 operational polar-orbiting satellites carrying sounding instruments to increase the 

coverage to ~6/day. Instruments on geostationary satellites could provide much more 

frequent observations of a more limited area, but with a more limited horizontal resolution, 

which further degrades at high latitudes. Although nadir-viewing microwave sounding 

instruments on polar-orbiting satellites can provide information on the vertical profiles of 

temperature, humidity and other species, their vertical resolution is typically rather coarse 
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(~3 km) and their application over land is limited by its high and variable emissivity [Hewison, 

1999],  the large uncertainty in the land surface temperature and limited resolution in the 

boundary layer. The new generation of infrared sounders have thousands of channels and 

offer improved vertical resolution (~1 km), but are limited to cloud-free conditions, or 

application above the cloud tops. Application of data from satellite sounding instruments in the 

boundary layer can be further complicated by the surface temperature and emissivity.  

 

Ground-based remote-sensing systems can complement their satellite-based counterparts. 

Microwave radiometers’ data can be used to retrieve profiles of temperature and humidity in 

clear or cloudy conditions at high temporal resolution, but only with moderate resolution in the 

boundary layer, which degrades further at higher levels. Microwave radiometers are one of 

the technologies being considered for deployment as part of a proposed network of Integrated 

Profiling Systems, comprising different ground-based remote-sensing instruments operating 

at the same site [Monna et al., 2006]. In this concept, observations from different instruments 

are combined in a common retrieval which exploits the benefits of the various observation 

types to provide a best estimate of the true atmospheric state at the site. It is hoped that this 

will improve the vertical resolution of the profiles that can be retrieved by microwave 

radiometry alone. These retrievals are then available for assimilation into NWP models or the 

data could be assimilated directly. Their observations are expected to have most impact on 

the highest resolution NWP models because information concentrated in the boundary layer. 

These models have the shortest range (6-36 hr) because of the limit imposed by their 

boundary conditions.  

1.1.5 User Requirements 

The stated requirements of all the Met Office users of upper air observations were reviewed 

by Stringer [2006]. These are expressed in terms of the accuracy, vertical and horizontal 

resolution, observing cycle and delay required of temperature in the boundary layer and lower 

troposphere, humidity in the lower troposphere and column integrated water vapour for 

climate monitoring, global and regional NWP, synoptic, aeronautical and nowcasting 

applications. The requirements are defined in terms of the minimum threshold for 

observations to have any impact on each application, the breakthrough threshold at which the 

observations could provide a significant advance in forecast capability (relative to that 

currently available), and the maximum threshold, above which no significant benefit will be 

felt. All observing systems have strengths and weaknesses – none meet the breakthrough 

levels for all aspects (accuracy, vertical and horizontal resolution, observation cycle and 

delay). The best that can be expected is to achieve this level of performance from a 

combination of systems. The user requirements are shown in Table 1-1 for regional NWP. It 

can be seen that this method of specifying user requirements for observations gives a very 

broad range between minimum and maximum thresholds, which makes it difficult to compare 

the benefits of different observing systems. 
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Table 1-1 User requirements of temperature and humidity profiles for Regional NWP – 
minimum, breakthrough and maximum thresholds 

Temperature (K) 

Boundary Layer 

Temperature (K) 

Lower Troposphere 

Relative Humidity (%) 

Lower Troposphere 

Integrated Water Vapour 

(kg/m2) 

NWP Regional 

Min. Brk. Max. Min. Brk. Max. Min. Brk. Max. Min. Brk. Max. 

 

Accuracy  

 

1.5  0.5 1.5  0.5 10  5 5  1 

Vertical  

Resolution 

(km) 

0.5 0.3 0.01 2 1 0.1 2 1 0.1 N/A N/A N/A 

Horizontal 

Resolution 

(km) 

50 10 1 200 30 3 200 30 3 100  10 

Observing  

Cycle (hr) 
3 1 0.166 12 3 0.5 12 3 0.5 1  0.5 

Delay in  

Availability (hr) 
3  0.083 5  0.25 5  0.25 0.5  0.1 

 

Regional NWP needs observations with better accuracy, vertical and horizontal resolution 

than global NWP. It is here that observations from ground-based microwave radiometers are 

expected to have most impact, because their information is concentrated in the boundary 

layer, which often has high temporal variability that may be well captured by their high 

frequency observations. Better temperature accuracy, vertical and horizontal resolution is 

required in the boundary layer than the rest of the lower troposphere due to its greater 

variability in space and time.  

 

However, if the user requirement for the minimum horizontal resolution of boundary layer 

temperature profiles is taken at face value, then ground-based microwave radiometers will 

have no impact in regional NWP, unless they can be deployed in a dense network of ~100 in 

the UK. It would be prohibitively expensive to deploy a network of ground-based instruments 

that essentially take spot measurements (i.e. do not cover a significant area) capable of 

exceeding the stated minimum threshold for horizontal resolution of regional NWP. This thesis 

will investigate whether the high time-resolution of their observations can compensate for this 

deficiency. 

 

Global climate monitoring has similar requirements to regional NWP for accuracy and vertical 

resolution of temperature and humidity profiles, although the horizontal resolution, observing 

cycle and delay in availability are much less stringent. However, these requirements do not 

distinguish between the accuracy of the observations due to short-term noise and long-term 

drift, which become critical for climate monitoring. As will be shown, the latter can be 
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significant for microwave radiometers. Climate monitoring also requires a network of very 

stable instruments sampling in the same configuration over periods >10 years to detect small 

changes [IPCC, 2001]. The Hadley Centre recommend more stringent criteria for inter-

decadal biases with minimum and maximum mean value accuracies of 0.3 °C and 0.1 °C for 

temperature and 5% and 2% for humidity [Stringer, 2006]. As a new observing system and 

one for which the absolute calibration is not sufficiently repeatable for this purpose, it is 

unlikely that data from ground-based microwave radiometers will contribute significantly to the 

climate monitoring requirements for some time.  

 

1.2 The Principles of Microwave Radiometry 
Absorption features of atmospheric molecular species can be exploited to retrieve profiles of 

their concentration and temperature. Rotational transitions of molecular gases generate 

spectral lines at microwave frequencies – the dominant species being oxygen and water 

vapour. Oxygen, being a well-mixed gas, can be used to profile the atmospheric temperature 

structure. Once this is established, emission from water vapour lines can be used to profile 

humidity. 

1.2.1 Why use microwaves? 

As will be shown, microwaves are able to penetrate through non-precipitating clouds with 

small drop sizes relative to the wavelength. This is a big advantage for profiling over visible 

and infrared wavelengths, which are strongly absorbed by cloud, which generates a 

discontinuity in their response to the humidity changes as saturation is reached. Microwave 

radiometers can be made sufficiently sensitive for atmospheric profiling with channel 

bandwidths less than the width of absorption features. Each channel is sensitive to a narrower 

range of opacities than the relatively broad channels of an infrared radiometer. This can 

improve the vertical resolution of the profiles retrieved from microwave radiometers [Houghton 

et al., 1984]. Additionally, microwave radiometers are relatively robust instruments, capable of 

continuous unattended operation for long periods with minimal maintenance – making them 

suitable for use as part of an automated system. Their measurements are not seriously 

affected by dust or solar radiation, but are sensitive to liquid water, which can degrade the 

accuracy of the measurements in rain. 

1.2.2 Emission, absorption and scattering mechanisms 

Figure 1-1 shows the absorption due to oxygen, water vapour and liquid water cloud in typical 

conditions near the surface. The oxygen spectrum includes 33 spin-rotational lines between 

51.5-67.9 GHz. In the lower troposphere pressure broadening merges these into a single 

band of strong absorption, referred to as the 60 GHz oxygen complex. Absorption is very 

strong near the centre of this band due to the strength and density of the spectral lines. A 

channel of a ground-based radiometer detecting down-welling radiation near the centre of this 
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band (~59 GHz) experiences very strong absorption, so the atmosphere has a 1/e penetration 

depth of only ~300 m [Troitsky et al., 1993]. Frequencies further from the centre experience 

less absorption, such that a channel at ~51 GHz sees atmospheric emissions integrated over 

~10 km. The differential absorption between different channels in this band provides the 

principle for retrieving temperature profiles. 

 

 
Figure 1-1 Atmospheric absorption spectrum for typical surface conditions: 

T=288.15 K, p=1013.25 hPa, RH=100%, L=0.2 g/m3 following Rosenkranz [1998]. Lines 
show total absorption coefficient and contribution from oxygen, water vapour and 

cloud, coloured according to the legend. Grey vertical bars indicate the centre 
frequencies of the Radiometrics TP/WVP-3000 microwave radiometer. 

 

In this part of the spectrum water vapour has a single line at 22.235 GHz due to rotational 

transition of its electric dipole within a single vibrational state. At higher frequencies 

absorption increases due to the non-resonant water vapour continuum. These are relatively 

weak features, so the atmosphere is optically thin, even at its centre – the down-welling 

radiance at the surface is a function of the emissions integrated over the whole atmosphere, 

which in turn depend on the temperature and partial pressure of water vapour at each level. 

However, channels further from the line centre experience weaker absorption and will be less 

sensitive to water vapour near the surface. This principle is used to retrieve humidity profiles, 

once the temperature profile has been established. However, the validity of its assumptions is 

questioned later in this thesis. 
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Absorption due to liquid water also follows a non-resonant continuum. Depending on the 

liquid water content, its emission can dominate the signal in the 30-50 GHz window region, 

whilst still remaining optically thin. So channels here are sensitive to the integrated amount of 

liquid water, but provide little information on its vertical distribution. 

 

Radiation propagating through a medium can be scattered by inhomogeneities if they have 

dielectric properties dissimilar to that of the medium. For liquid water, absorption is relatively 

strong, so scattering only becomes significant as particle sizes approach the Rayleigh 

scattering criterion, 2πr <<λ. Figure 1-2 shows how the scattering efficiency of water droplets 

depends on the size of the particles and the frequency of radiation. At the microwave 

frequencies used in this study, this only becomes significant for airborne hydrometeors larger 

than drizzle drops (r>>0.1 mm), such as rain drops, snow and hail. Haze and cloud droplets 

are smaller than this, so scattering can be neglected as it is insignificant compared to 

absorption. 

 

Figure 1-2 Ratio of scattering to absorption cross-sections for water spheres radius, r, 
at microwave frequencies. Typical drop sizes are indicated ranging from small and 

large cumulus clouds, drizzle, light rain, heavy and torrential rain.  

Solid lines indicate where Rayleigh scattering criterion is valid 2πr <<λ. 

Dashed lines indicate the transition to the Mie scattering regime. 
Adapted from Janssen [1993]. 
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1.2.3 Radiative Transfer Modelling 

The radiative transfer of microwaves through clear air is modelled by integrating absorption 

due to each spectral line for both oxygen and water vapour. This is referred to as a line-by-

line model. Extra absorption is then added to account for the water vapour continuum and 

liquid water, which are modelled empirically. Scattering is neglected as it is only significant for 

large particles of liquid water or ice associated with moderate to heavy precipitation, when the 

accuracy of radiometer observations is likely to be compromised. Down-welling radiances at 

discrete frequencies are propagated along the atmospheric path by combining the emission 

from each atmospheric layer with radiation from above after accounting for its absorption 

within the layer. 

 

The radiative transfer model forms part of the forward model, used to translate from state 

space of the profile to observation space of the radiometer. Other components of the forward 

model include the discretisation of the atmospheric profile to a finite number of levels and the 

partitioning of the variables of state space into the control variables used in the retrievals – for 

example profiles of temperature, absolute humidity and liquid water averaged over 

atmospheric layers. Forward models are needed for all physical retrieval techniques. 

 

1.3 Retrieval Techniques 
Observations at a series of frequencies along an atmospheric absorption feature or a range of 

elevation angles can be used to retrieve profiles of temperature and humidity (or the partial 

pressure of the absorbing species). The principle of profiling by frequency scanning is 

differential absorption, described above. Views of the atmosphere at different elevation angles 

can also be used to profile temperature in the boundary layer – even with a single channel 

near the centre of the strongly absorbing  60 GHz oxygen complex [Troitsky et al., 1993]. This 

relies on the increase of absorption per vertical kilometre with zenith angle [§5.4]. 

 

However, the retrieval of profiles from radiometer observations is an ill-posed problem: no 

unique solution exists that matches a given set of observations within their errors. This can 

lead to extreme sensitivity to low levels of observation noise. The basic solution to this 

problem is to use extra information in the retrieval. This a priori information can take the form 

of a statistical climatology (e.g. of radiosonde profiles), a short-range forecast from an NWP 

model or other observations, such as a nearby or recent radiosonde profile. 

1.3.1 Integrated Water Vapour and Liquid Water Retrievals 

For several years microwave radiometers have been used to retrieve the column Integrated 

Liquid Water (ILW) and Water Vapour (IWV) [e.g. English et al., 1995, Crewell et al., 2001, 
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Martin et al., 2006]. These terms are also referred to as Liquid Water Path (LWP) and Total 

Water Vapour, Total Precipitable Water or Precipitable Water Vapour in the literature. 

 

IWV and ILW can be retrieved using only 2 channels: one near the 22.235 GHz line and one 

in the window region (30-50 GHz) where the atmospheric absorption is dominated by water 

vapour and liquid water, respectively, as shown in Figure 1-1. Although these frequencies are 

not sensitive to emission from other species, they have a weak dependence on the 

temperature of the water vapour/liquid water, which, in turn, depends on their vertical 

distribution. For this reason, the retrieval of IWV/ILW is still under-constrained and requires a 

priori information to resolve this potential ambiguity. The accuracy of the retrieval depends on 

the accuracy of the a priori temperature profile – so rapid changes can bias the retrieval 

slightly. IWV and ILW can be retrieved by a simple linear regression of the opacities at these 

frequencies, which can be calculated from the radiances observed by a 2 channel microwave 

radiometer [Gaussiat et al., 2006]: 

 

 
* *

1 1 2 2
* *

1 1 2 2

= τ τ

τ τ

+

= +

IWV v v

ILW l l
 (1.1) 

where  *
1τ and *

2τ are the opacities in each channel after subtracting the dry contribution, τd, 

1v , 2v 1l and 2l  are constants, functions of the path averaged absorption coefficients. 

 

The coefficients, 1v , 2v 1l and 2l , can be determined by linear regression of IWV and ILW 

calculated from a large ensemble of profiles and the opacities predicted for these by a forward 

model. In this method the data set of profiles provide the a priori information, which 

determines the vertical distribution of water vapour and liquid water statistically. (However, if 

this is determined from radiosonde profiles, additional algorithms are needed to generate the 

liquid water distribution synthetically based on the humidity profile.) It would also be possible 

to use other a priori information, such as NWP model data. However, the training data set 

used to calculate these coefficients must be representative of the conditions at the site of the 

retrievals to ensure the retrievals are not biased. Despite these ambiguities, microwave 

radiometry is regarded as the most accurate method of observing IWV and ILW [Crewell et 

al., 2002], at least in cloudy conditions. 

 

More sophisticated methods to retrieve IWV and ILW from radiometer data have been 

developed to exploit other a priori data, extra microwave channels [Crewell and Löhnert, 2003] 

and observations from other instruments [Löhnert et al., 2004]. 
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1.3.2 Empirical statistical regression 

Although the retrieval of temperature and humidity profiles is nonlinear, it can also be 

implemented as an empirical statistical regression between sets of observations and profiles. 

This technique was demonstrated by Güldner and Spänkuch [2001] using a data set of 18 

months’ observations from a Radiometrics TP/WVP-3000 and co-located radiosondes. While 

the application of this method is limited to those few sites where long time-series of co-located 

radiometer and radiosonde observations are available, it has the advantages of not requiring 

a forward model and implicitly accounting for any calibration biases in the radiometer 

(assuming they are constant). The coefficients derived for one location cannot readily be 

applied to other sites, even if they are at the same height (so pressure broadening is the 

same), because the a priori information used in the retrieval will not be representative of the 

climate for other sites [Cimini et al., 2006b]. This will bias the retrievals based on them, as 

they are essentially weighted averages of the observations and the background. 

1.3.3 Neural Network 

A nonlinear statistical regression can also be implemented as an artificial neural network. 

Solheim et al. [1996] developed this method to retrieve profiles of temperature, humidity and 

liquid water content from observations of the Radiometrics TP/WVP-3000 microwave 

radiometer, based on a training data set of thousands of radiosonde profiles covering 

10 years (with synthetic cloud added), which were input into a forward model to give synthetic 

observations. Being based on a nonlinear statistical regression makes neural networks prone 

to large errors if applied outside the range of their training data set. 

1.3.4 Variational Retrievals 

Just as NWP models are expected to provide short-range forecasts that are more accurate 

than climatological averages, they can provide a more accurate background than 

climatological data sets. These can be used in variational retrievals following a Bayesian 

framework. This thesis develops a One-Dimensional Variational (1D-VAR) retrieval by 

minimising a cost function to calculate a best fit between the radiometer observations and this 

background projected into observation-space. This minimisation requires the calculation of 

the derivatives of the forward model, which is computationally slow. Furthermore, because the 

retrieval of temperature and (particularly) humidity profiles is nonlinear, the minimisation 

requires iterative calculation, following variations of Newton’s method. These variational 

retrievals are optimal, in that they combine the observations and background, each weighted 

according to their expected error characteristics. They can also be readily extended to include 

observations from other instruments to investigate the potential benefit of the integrated 

profiling approach. However, they require considerable development and careful design in the 

choice of control variables, forward model operators, background and observation error 
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covariances, minimisation techniques, convergence testing and validation method. These 

aspects are addressed in Chapter 4 of this thesis. 

1.3.5 Integrated Profiling Technique 

During the course of this study, Löhnert et al. [2004] independently developed an optimal 

estimation method to retrieve profiles from ground-based remote sensing observations, 

similar to the variational method described above. Known as the Integrated Profiling 

Technique (IPT), this was developed to improve estimates of liquid water content by 

combining radiometer observations with those from a laser ceilometer and cloud radar, taking 

background information from a nearby radiosonde profile. Because the radiosondes do not 

measure liquid water, this was synthesised in the background and its error characteristic 

estimated using a high-resolution cloud resolving model. The IPT used profiles of 

temperature, absolute humidity and the logarithm of the liquid water content as control 

variables. (The logarithm is used to prevent the retrieval of unphysical negative cloud.) 

Löhnert et al. [2004] found the IPT retrieved temperature and humidity profiles with an r.m.s. 

accuracy in the lowest 3 km of 0.63 K and 0.64 g/m3, respectively, compared to 1.0 K and 

1.11 g/m3 for the background available from a nearby radiosonde – on average 6 hr and 

30 km from the remote sensing observations. 

1.3.6 Data Assimilation 

Data assimilation describes the process of how the observations are used in NWP models. 

Observations are compared to the background field in observation-space, interpolated to the 

observation point in space and time. This allows gross errors to be rejected and small biases 

to be corrected. The differences, known as observation increments, are analysed to generate 

a series of corrections to the previous short-range forecast, which are added to it to initiate 

the next forecast run. This analysis uses statistical characteristics of the background and 

observation errors to minimise a cost function describing their difference in an iterative 

process. The basic assumption of data assimilation is that short-range NWP provides good 

forecasts and that small corrections to these are applied based on their difference from a 

series of observations. This process forms a continuous cycle at each model run and aims to 

improve the accuracy of its forecasts. 

 

Three-dimensional variational assimilation (3D-VAR) is currently used in the assimilation of 

observations into the mesoscale version of the Met Office’s Unified Model. This can be 

thought of as an extension of the 1D-VAR retrieval described above, but instead of retrieving 

a single column profile, the state vector comprises a full 3-D representation of the model 

state. This allows the model to maintain balance between its thermodynamic fields in 3-D, 

without which the model would be prone to generate spurious results. In a simple version of 

3D-VAR all observations within a relatively short time window of each assimilation cycle are 

used and assumed to represent the same validity time. This process is shown schematically 
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in Figure 1-3. An improved version of 3D-VAR is used operationally in the Met Office 

mesoscale model, which compares observations with the First Guess at Appropriate Time 

(FGAT), rather than just the nominal analysis time. 

 

3D-VAR

3 6 9 12 15

Time (hrs UTC)

Obs

00z run

06z run

12z run

4D-VAR

3 6 9 12 15

Time (hrs UTC)

 

Figure 1-3 Schematic diagrams showing process of assimilating hourly observations 
(points with error bars) in boxed windows using previous model run as background.  

3D-VAR using all observations within ±1.5 hr assimilation window and single T+6 hr 

forecast as background to initiate a new forecast run every 6 hr. 

4D-VAR uses all observations within ±3 hr assimilation window and T+3 to T+9 hr 

forecasts as background to initiate new forecast run every 6 hr. 

 

4D-VAR is an extension of 3D-VAR, where observations are assimilated continuously over 

the assimilation window of the NWP model runs, as shown schematically in Figure 1-3, for 

example. This allows the model to build a complete, dynamically consistent structure which is 

better retained in the forecast. This, in turn, allows the assimilation scheme to better select 

between conflicting information from different observation types. 4D-VAR also allows greater 

exploitation of isolated observations – horizontally, vertically or temporally and may allow a 

series of high time-resolution observations to be interpreted correctly as the atmosphere 

advects over the observation site. However, 4D-VAR is very computationally expensive as it 

requires running the NWP model iteratively forward and backward over the assimilation 

window. For this reason, it is only currently implemented in the global and larger regional 

versions of the Met Office Unified Model, but is likely to become operational in convective 

scale models in a few years. 

 

Instead of assimilating observations directly in 4D-VAR, it is also possible to assimilate 1D-

VAR retrievals of atmospheric profiles in a process referred to as 1D+4D-VAR. Marécal and 

Mahfouf [2003] demonstrated this provided more robust convergence than direct assimilation 

of observations in 4D-VAR due to problems in their particular implementation. However, they 

noted that the 1D-VAR minimisation did not convergence towards the absolute minimum. 
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While this method is not optimal, because it uses the background twice, it has practical 

advantages of allowing profiles to be retrieved independently off-line and for these to be 

assimilated by the same method used for radiosondes. 

 

1.4 Introducing the Radiometrics TP/WVP-3000 
This study concentrates on the application of ground-based microwave radiometers and is 

based on a commercial system – the Radiometrics TP/WVP-3000, shown in Figure 1-4. This 

radiometer has 7 channels in the oxygen band from 51-59 GHz for temperature profiling and 

5 channels between the water vapour line at 22.235 GHz and the window region at 30 GHz, 

to provide information on humidity and liquid water cloud. The centre frequencies of its 

channels are shown on Figure 1-1. 

 

 

Figure 1-4 Radiometrics TP/WVP-3000 Microwave Radiometer System at Camborne. 

 

This system has participated in several trials and experiments at different locations over 

4 years and proved very reliable. During this period extensive liaison with the manufacturers 

has resulted in a greater understanding of the system and a number of improvements, both 

hardware – to improve its performance in rain and resilience to corrosion, and software – to 

speed up the observing cycle, reduce the time between calibrations and the noise introduced 

by them. Its performance has been evaluated by different tests [Hewison and Gaffard, 2003].  

 

1.5 The data sets used in this study 
Table 1-2 summarises the trials and experiments the Radiometrics TP/WVP-3000 has 

participated in, providing the data used in this study. The radiometer has been based at 

Camborne for most of the period, where it has been characterised in terms of noise, 

calibration accuracy and its reliability assessed. Another microwave radiometer – Radiometer 
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Physics’ Humidity And Temperature Profiler (HATPRO) [Rose et al., 2005] – was also 

operated here from Oct 2004 to Jan 2005, allowing direct comparison of the observations. 

Profiles retrieved from the radiometers’ data have been validated against numerous 

radiosondes launched from this operational sounding station in the UK upper air network. 

 

Table 1-2 Dates and locations of deployments of Radiometrics TP/WVP-3000 
microwave radiometer used in this study 

Trial Dates Location Sondes Other  
Instruments 

Aims of participation Reference 

Trial 2002-2005 

except dates 

listed below 

Camborne, 

UK 

~2000 Wind Profiler 

Cloud Radar 

HATPRO 

Reliability, Noise, 

Calibration and 

Retrieval performance 

Hewison and 

Gaffard [2003] 

Trial Spring 2003 Cardington, 

UK 

38 WVR1100 

Ceilometer 

Stratocumulus studies Hewison [2003] 

CWAVE Summer 

2003 

Chilbolton,  

UK 

0 Cloud Radar 

WV LIDAR 

Water Vapour 

Retrieval validation 

Agnew and 

Hewison [2004] 

TUC Winter 

2003/04 

Payerne, 

Switzerland 

264 Wind Profiler 

Cloud Radar 

ASMUWARA 

Retrieval Techniques: 

ability to retrieve 

inversions and fog 

Ruffieux et al. 

[2006] 

CSIP Summer 

2005 

Linkenholt, 

UK 

57 Wind Profiler 

Ceilometer 

HATPRO 

Convection studies: 

stability 

Browning et al. 

[2006] 

 

The radiometer was also deployed at Cardington and Chilbolton in 2003 to participate in other 

trials and its retrievals compared to the integrated water vapour and liquid water derived from 

a two channel microwave radiometer, the Radiometrics WVR1100 [Hewison, 2003] and 

humidity profiles from a water vapour lidar [Agnew and Hewison, 2004]. 38 radiosondes were 

launched at ~hourly intervals on 5 days during the Cardington trial to validate the retrievals. 

 

In the winter of 2003/04, the radiometer participated in the international Temperature hUmidity 

and Cloud (TUC) campaign [Ruffieux et al., 2006], together with several other instruments, 

aiming to allow the development of Integrated Profiling retrievals. This included the All-Sky 

Multi-wavelength radiometer (ASMUWARA), whose observations were compared with the 

Radiometrics TP/WVP-3000 as brightness temperatures [Cimini et al., 2006a], retrieved 

profiles [Cimini et al., 2006b], IWV retrievals [Martin et al., 2006] and with absorption models 

[Hewison et al., 2006]. The climate of Payerne, Switzerland (altitude 491 m) is favourable to 

generate strong inversions and fog during winter because of katabatic drainage flow from the 

nearby Jura and Prealp mountain ranges. This provided a useful data set for testing the 

performance of profile retrievals, which could be validated against co-located radiosondes 

from this operational sounding station. 
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The Convective Storms Initiation Project (CSIP) [Browning et al., 2006] took place in central, 

southern England during summer 2005. The Radiometrics TP/WVP-3000 took part on the 

same site as a wind profiling radar and within 2 km of the HATPRO radiometer to investigate 

these systems’ abilities to resolve the structure of the convective boundary layer by sampling 

at high temporal resolution (~30 s) [Hewison and Gaffard, 2006]. 57 radiosondes were also 

launched from this site at ~hourly intervals on 8 days. 

 

Figure 1-5 Location of Radiometrics TP/WVP-3000 deployments used in this study. 

  

The locations of these sites are shown in Figure 1-5. Profiles interpolated from the mesoscale 

version of the Met Office Unified Model have been archived at all these sites for the duration 

of these trials, including the analysis and hourly forecasts from model runs every 6 hours. 

During this period, the Mesoscale model used a horizontal grid of 12 km with 38 levels in the 

vertical and covered the whole British Isles, extending southwards to cover the area shown in 

Figure 1-5. These model profiles have been used to provide background for the 1D-VAR 

retrievals and compared with the radiometer data in this study. 
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1.6 Thesis Outline 
The remainder of this thesis discusses the following questions in more detail using data from 

this radiometer obtained in the above trials and experiments during the course of this work: 

 

• What is a microwave radiometer? 

• How good are its observations? 

• How can it be used to retrieve temperature and humidity profiles? 

• How good are the profiles? And why? 

• What are the problems with the observations and their retrievals? 

• How can they be improved? 

• How can they be exploited? 

 

Chapter 2 describes the components of the radiative transfer models needed by the retrievals’ 

forward model to translate state space into observation space. The uncertainties involved and 

possible optimisations are also discussed. Chapter 3 describes the Radiometrics TP/WVP-

3000 – the microwave radiometer used in this study. Results of various tests are analysed to 

characterise its performance in terms of calibration bias and radiometric noise, as well as  

practical issues. A variational technique to retrieve profiles from the radiometer’s observations 

is developed in Chapter 4. This includes a series of experiments conducted to investigate 

different aspects of the retrievals. Chapter 5 analyses the performance of a different retrieval 

method: the neural network. These retrievals are used in Chapter 6 to investigate case 

studies to show the benefits and limitations of the radiometer observations. Finally, Chapter 7 

extends the analysis of the previous chapters to draw together some recommendations for 

how microwave radiometer observations could be optimised for operational use. Each chapter 

closes with a summary of its key findings, with the conclusions summarised in Chapter 8. 
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Chapter 2 Radiative Transfer Modelling 
Retrievals need a forward model to transform from state space of the temperature, humidity 

and liquid water profile into observation space of radiances measured by the radiometer. The 

key component of the forward model is the Radiative Transfer Model (RTM), which is 

described in this chapter. As illustrated in Figure 2-1, the predictions of the RTM depend on 

the input atmospheric variables, the radiometer frequency, ν, and zenith angle, θ, and 

boundary conditions given by the cosmic microwave background (§2.1.3). 

 

Figure 2-1 Schematic diagram of the forward problem of estimating observations from 
an atmospheric profile using the radiative transfer model used in this study. 

2.1 Introduction to Radiative Transfer 
The fundamental basis of any remote-sensing application is the Radiative Transfer Equation, 

first developed by Chandrasekhar [1960], which describes the flow of energy to the 

instrument. This can be derived by considering the physical principles responsible for 

emission, absorption and scattering of a signal, referred to jointly as extinction.  

 

The specific intensity, Iν, describes the power that flows at a given point in a given direction 

per unit frequency, ν, per unit solid angle. The differential form of the radiative transfer 

equation (RTE) considers how Iν changes due to sources and sinks along its path, ds: 

 
dI I S
ds
ν

να= − +  (2.1) 

where α, the absorption coefficient and S, the source terms describe the loss and gain of 

energy. 
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If scattering can be neglected (as shown later in this chapter), α is a scalar quantity describing 

absorption in the medium and S  describes its emission. In local thermodynamic equilibrium at 

temperature, T, emission is given by Kirchhoff’s law assuming a balance between emission 

and absorption (these terms will be used interchangeably in this thesis): 

 ( )S B Tνα=  (2.2) 

where Bν(T) is spectral brightness given by the Planck function: 

 ( )
3

2 /

2 1
1h kT

hB T
c eν ν

ν
=

−
 (2.3) 

where h is Planck’s constant, k is the Boltzmann constant, c is the speed of light. 

 

Substituting these expressions for S  and Bν(T) into (2.1) and integrating gives this form of the 

RTE: 

 ( ) ( ) ( ) ( ) ( ) ( )11

0
00 τ τ

ν ν ν α− −= + ⋅∫
ss s

s
I I s e B T e s ds  (2.4) 

where  s0 and s1 are the limits of the propagation path – in this case, the surface and space,  

τ(s) is the opacity, defined as: 

 ( ) ( )
0

.
s

s

s s dsτ α ′ ′= ∫  (2.5) 

2.1.1 Definition of Brightness Temperature 

At low frequencies used in microwave radiometers, h kTν << for tropospheric temperatures. 

This allows the Planck law to be simplified by the Rayleigh-Jeans approximation, as a linear 

relationship with temperature: 

 ( )
2

2 2

2 2kT kTB T
cν
ν

λ
≈ =  (2.6) 

where λ is the wavelength. 

 

This is used to define the brightness temperature, Tb, as an equivalent unit of Iν  or Bν , as the 

physical temperature of a black body to emit at Tb =T, expressed in units of kelvin (K). 

Importantly, this is consistent with the definition of Tb used to calibrate the radiometer against 

the known temperature of reference black body targets. Tb is used as the unit of radiance 

throughout this study. 

 

2.1.2 The Radiative Transfer Equation 
This definition allows us to express the basic form of the RTE used in this thesis: 
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 ( ) ( ) ( ) ( )
1

1

0

eτ τα− −= + ∫
s

s s
b cmbT T e s T s ds  (2.7) 

where Tb is the brightness temperature at the receiver. Tcmb is the brightness temperature of 

the background, s is the propagation path, α(s) is the absorption coefficient, T(s) is the 

physical temperature, and τ(s)  is the opacity along the path, ds, defined by (2.5). 

 

The calculation of Tb by applying a discrete form of (2.7) is referred to as a Radiative Transfer 

Model (RTM). The discretisation is performed by calculating the average virtual temperature, 

specific humidity and cloud liquid water content over finite layers as described in §2.6.  

2.1.3 Cosmic Microwave Background 

For radiation down-welling through the atmosphere, the cold space boundary condition, s1, is 

given by the Cosmic Microwave Background (CMB) in the absence of other extra-terrestrial 

sources, such as the Sun or Moon. This corresponds to the residual radiation field emitted 

during the recombination of protons and electrons to form hydrogen in the early universe, 

when the temperature was about 3000 K [Janssen, 1993]. This radiation is red-shifted and 

now appears to have an almost uniform brightness temperature, Tc = 2.736 K. To account for 

the departure from the Rayleigh-Jeans approximation, the effective brightness temperature of 

CMB, Tcmb is adjusted by a frequency dependent amount following Janssen [1993]: 
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These offsets are small at these frequencies – 0.04 K at 22.235 GHz increasing to 0.24 K at 

58.8 GHz and become more significant at millimetre wavelengths. 

2.2 Gaseous absorption models 
Absorption models lie at the heart of the forward model. They describe the physical processes 

responsible for generating the signal seen by the radiometer and used in the retrieval.  

 

Atomic gases radiate electromagnetic waves at discrete frequencies, known as line spectra 

corresponding to transitions between electronic states. These tend to fall in the visible or 

ultraviolet parts of the spectrum. Molecular gases have additional emission lines due to 

vibration and rotational modes of the constituent atoms, which tend to occur at infrared and 

microwave wavelengths, respectively. The frequency of these lines depends on the difference 

of quantised energy levels of the transitions, which are determined by quantum theory. A 

detailed description of these processes and the coupling that can occur between them is 

given in Rosenkranz [1993]. 
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2.2.1 Line broadening 

In practice, spectral lines are not infinitesimally sharp. The constant motion of the 

molecules/atoms results in their emission being Doppler shifted, resulting in Thermal 

Broadening. This is an important process for microwave propagation in the mesosphere, 

where it typically broadens spectral lines by 10-6 times their frequency. In the lower 

atmosphere, this is surpassed by Pressure Broadening which results from the interaction 

between molecules. It is by exploiting the pressure broadening of spectral lines that we are 

able to get information on the species’ vertical distribution needed to retrieve profiles of 

temperature and humidity with any practical microwave radiometer (with finite bandwidths). 

 

The power absorption at a given frequency, α(ν), due to a single species can be expressed 

as the sum of all absorption lines: 

 ( ) ( ) ( )
,

,fi fi
f i

n S T Fα ν ν ν= ∑  (2.9) 

where n is the number of molecules per unit volume, f and i denote energy levels of an 

isolated molecule, Sfi(T) is the intensity for a single line for that molecule and F(ν,νfi) is a line-

shape function.  

 

In practice, it is common to limit the influence of each line to a finite bandwidth (e.g. 750 GHz) 

to speed up line-by-line radiative transfer calculations. To compensate for the small amount of 

absorption omitted in this process, the continuum contributions can be inflated accordingly. 

Different forms have been proposed for this line-shape function based on different models of 

the collisions between particles, from the simple Lorentzian, which is only valid is the sparse 

upper atmosphere to the more complex Kinetic model. However, the models considered here 

use the form derived by van Vleck and Weisskopf [1945]: 
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where the line-width parameter, γ, is defined as half the frequency width at half peak intensity. 

 

It is by exploiting the pressure broadening of spectral lines that we are able to get information 

on the species’ vertical distribution needed to retrieve profiles of temperature and humidity 

with any practical microwave radiometer (with finite bandwidths). 

 

As mentioned in Chapter 1, in the troposphere microwave absorption is dominated by oxygen 

and water vapour. These will be discussed in more details in the following sections. However, 

several minor species are also radiatively active. 
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2.2.2 Water Vapour 

Rotational transitions of the electric dipole of water vapour produce resonant absorption lines 

extending from the microwave to sub-millimetre wavelengths, including 22.235 GHz and 

183.31 GHz. There are numerous other water vapour lines at frequencies just above this 

region that also contribute to the microwave absorption. 

 

In addition to these absorption lines, researchers have found it necessary to include a non-

resonant contribution by a water vapour continuum for the models to match observations, 

especially in window regions between lines (see Figure 1-1). Although many theories have 

been developed to explain the process responsible for the water vapour continuum, it is 

usually represented as an empirical term used to fit observations to the theoretically based 

resonant terms. It is generally divided into two contributions, which are self- and foreign- 

broadened, due to collisions of water vapour molecules with molecules of the same species 

or other gases, respectively [Rosenkranz, 1998].  

2.2.3 Oxygen  

Oxygen produces strong resonant absorption due to transitions in the magnetic dipole spin-

rotation band between 51.5-67.9 GHz. The oxygen spin-rotation band also includes non-

resonant transitions leading to absorption that is relatively weak at 60 GHz, but that also 

contributes to line coupling in the resonant region. Although Zeeman splitting of the fine 

structure in this band can occur in the magnetic field, this is only noticeable in the upper 

atmosphere and its effect masked by emission from lower levels in the ground-based viewing 

geometry. Pressure broadening causes the multitude of lines in the 60 GHz oxygen complex 

to appear as a continuous feature in the ground-based viewing geometry. 

2.2.4 Other species  

There are numerous ozone lines at millimetre wavelengths. However, these have a negligible 

influence at the lower frequencies considered in this thesis, so it is not included in the RTM. 

As for nitrogen, otherwise inactive, there is collision induced absorption, which becomes 

significant above 100 GHz in very dry conditions. Although the strength of this term varies 

between the models, its impact is small. A simple model of the nitrogen continuum is included 

in the RTM used in this thesis [Rosenkranz, 1998]. Its partial pressure is easy to calculate, 

being a well-mixed gas.  

2.2.5 Example Brightness Temperatures 

The radiative transfer equation (2.7) has been evaluated to predict the down-welling 

brightness temperature (Tb) at zenith for the 1976 US standard atmosphere in clear conditions 

in Figure 2-2, using different absorption models. Channels in the 30-40 GHz window region 

show the lowest Tb, while those nearer the centre of the 22.235 GHz water vapour line, Tb 
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increases, but the atmosphere remains optically thin. It becomes optically thick for channels 

near the centre of the 60 GHz oxygen complex, where Tb approaches the average 

thermodynamic temperature of the lowest few hundred metres of the atmosphere. Although 

the model differences appear to be quite small on this scale, the figure serves to illustrate the 

range of Tb observed at different frequencies. The differences are discussed is the following 

section and their significance analysed in §3.4.2. 

 

 

Figure 2-2 - Spectra of zenith brightness temperatures for clear standard atmosphere 
modelled with MPM87, MPM89, MPM93 and Ros98 absorption models. 

Vertical grey lines indicate centre frequencies of Radiometrics TP/WVP-3000 channels. 

2.2.6 Absorption models available 

The differences between the models pertinent to this study are discussed in the following sub-

sections. A more general discussion is given in Rayer [2001]. Figure 2-2 shows the 

differences between the models are small outside the window regions, but these depend on 

the temperature, pressure, humidity and frequency. These models are compared to 

observations in §3.4.2, which led to the selection of Ros98 for use in the 1D-VAR retrievals 

developed in this study. However, other studies use the other models – for example, the 

neural network in Chapter 5 uses MPM87. 

2.2.6.1 MPM87 [Liebe and Layton, 1987] 

The clear air absorption part of the Millimetre-wave Propagation Model, MPM87 includes 30 

water vapour lines and 44 oxygen lines all in the range 20-1000 GHz, based on theoretical 
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values and a Van-Vleck Weisskopf shape function. These are supplemented by an empirically 

derived water vapour continuum, fitted to laboratory observations at 138 GHz. However, 

these observations were limited to 282-316 K, and must be extrapolated for typical 

atmospheric conditions. Additional terms represent the non-resonant absorption due to the 

Debye spectrum of oxygen below 10 GHz and the pressure-induced nitrogen absorption 

above 100 GHz, which can become a significant contribution to the overall absorption in low 

humidity.  

2.2.6.2 MPM89 [Liebe, 1989] 

The 1989 revision of MPM modified the parameters describing the 183 GHz water vapour 

line, fitting the pressure broadened line width with four parameters, instead of one. Other 

components are the same as MPM87 for the purposes of this study. 

2.2.6.3 MPM93 [Liebe et al., 1993] 

This version of MPM, has 34 water vapour lines between 20-1000 GHz, defined in a slightly 

different manner from MPM89. The 183 GHz line is 8.5% wider and 5% stronger than in 

MPM89. The water vapour continuum absorption is formulated as a pseudo-line near 2 THz, 

and has a different temperature dependence, based on newer observations. Like its 

predecessors, MPM93 includes 44 oxygen lines with the same line strengths, but 5% greater 

widths and 15% stronger mixing than MPM89. The non-resonant nitrogen absorption is 

essentially the same as MPM89 at the frequencies in this study. 

2.2.6.4 Ros98 [Rosenkranz, 1998] 

Ros98 uses 15 water vapour line parameters, which are very similar to the strongest lines 

used in MPM89. The other half of the lines have been omitted as they were judged to have 

negligible impact. Rosenkranz’s investigations suggested a range of observations could be 

best modelled by using a water vapour continuum with a combination of MPM87's foreign-

broadened component, and MPM93's self-broadened component. However, the water vapour 

lines used were truncated at ±750 GHz, so the foreign- and self- broadened parts of the water 

vapour continuum were increased 15% and 3%, respectively to compensate. This model uses 

the same oxygen line parameters as MPM93, except at sub-millimetre frequencies, where 

values from the HITRAN database were used. It also uses a different form of non-resonant 

absorption due to pressure broadening by nitrogen. 

 

2.2.7 Forward Model Spectroscopic Error 
Random errors in the spectroscopy will be included in the observation errors in the retrievals 

and error analysis in Chapter 4. It would be difficult to perform a full error propagation through 

the radiative transfer model, even if estimates of the uncertainty on each spectroscopic 

coefficient were available, which they are not. Instead, forward model errors due to 
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spectroscopic uncertainties are estimated here as the difference in zenith brightness 

temperature calculated by 2 different absorption models, after removing their average 

difference. 

 

The spectroscopic error has been evaluated using 1200 rocketsonde profiles spanning global 

conditions, and calculations of the zenith brightness temperature at 12 centre frequencies of 

Radiometrics TP/WVP-3000 channels for 2 different absorption models (MPM93 and Ros98). 

This was only done for clear skies. 

 

The difference between the brightness temperatures calculated by the 2 models was then 

analysed. For the low frequency channels, it was found to depend on the Integrated Water 

Vapour (IWV), so the statistics have been divided into latitudinal bands: arctic, mid-latitude 

and tropical, as well as the global average. The covariance of the differences for mid-latitudes 

was then calculated (after removing average difference) to estimate the spectroscopic 

component of the forward model error in §4.4.1.2. The standard deviations of the brightness 

temperature differences are given in Table 2-1. As expected, the largest uncertainties in the 

model are found in the channels near the centre of the 22.235 GHz water vapour line and in 

the wings of the oxygen band at ~52 GHz. There is strong correlation between adjacent 

channels, which may further degrade the resolution of the retrievals. However, this empirical 

method may overestimate the spectroscopic contribution to the overall observation error – 

these terms are larger than are assumed in the operational assimilation of satellite data, 

although their impact would be reduced in the downward viewing geometry. 

 

Table 2-1 - Estimated Forward Model Spectroscopic Error 

Centre 
Frequency

Arctic Mid-Lat Tropical Global 
Average

(GHz) (K) (K) (K) (K)
22.235 0.54 0.79 0.65 1.01
23.035 0.54 0.79 0.65 1.01
23.835 0.50 0.73 0.62 0.94
26.235 0.41 0.58 0.52 0.74
30.000 0.40 0.54 0.50 0.69
51.250 0.71 0.95 0.80 1.20
52.280 0.52 0.70 0.65 0.88
53.850 0.14 0.18 0.16 0.23
54.940 0.02 0.03 0.02 0.03
56.660 0.01 0.01 0.01 0.01
57.290 0.01 0.01 0.01 0.01
58.800 0.01 0.01 0.00 0.01  
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2.3 Cloud extinction models  
Although microwaves can penetrate thick cloud layers, liquid water has strong absorption due 

to its dielectric properties and this must be accounted for in the forward model. 

2.3.1 Liquid water cloud 
As we go from gases to liquids, the interaction between particles increases. Liquids may be 

regarded as an enormous molecule with a correspondingly increased number of degrees of 

freedom, leading to a large number of closely spaced spectral lines, effectively becoming 

continuous.  

 

Electromagnetic radiation interacts with the dipole moment of cloud ice and liquid particles 

depending on their dielectric properties and geometry. For non-precipitating liquid water 

cloud, the droplets are much smaller than the wavelength of microwaves, so scattering can be 

neglected and the absorption coefficient is given by the Rayleigh approximation. This is 

accurate within several percent for particles with diameter less than 2% of the wavelength. 

For the frequencies below 60 GHz considered in this study, the Rayleigh approximation is 

valid for all drops less than 100 μm diameter. This includes almost all non-precipitating liquid 

water clouds.  

 

In the Rayleigh limit scattering is not significant compared to absorption, so extinction is not 

sensitive to the particle’s size and can be estimated as a function of the cloud’s liquid water 

content and temperature. The frequency dependence of liquid water’s dielectric permittivity is 

typically modelled following a Debye [1929] relaxation process, describing the response of an 

ideal population of non-interacting dipoles to an alternating external electric field. This thesis 

adopts the approach of Liebe [1989] who fitted observations to a double-Debye process with 

temperature-dependent relaxation frequencies of ~10 GHz and ~400 GHz. In this formulation, 

the cloud absorption coefficient increases as approximately the square of the frequency below 

the relaxation frequency, but linearly at higher frequencies. However, it is difficult to conduct 

such tuning with observational data of atmospheric clouds because of the absence of in situ 

measurements of liquid water content (by radiosondes) and the very large spatial and 

temporal variability of cloud. In MPM, this is implemented using values originally derived for 

sea water. However, there is very little sensitivity to salinity above 10 GHz [Ellison et al., 

2003].  

 

Haze formed from condensation of water onto hydroscopic nuclei has very small particle sizes 

(<<1 μm) and very low liquid water content. It is, therefore, completely transparent to 

microwaves. 
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2.3.2 Supercooled Liquid Water Cloud 

Liquid water can exist at temperatures below its nominal freezing point where there is a deficit 

of heterogeneous ice condensation nuclei, but is unstable to glaciation in the presence of ice 

crystals. Thin layers of pure supercooled liquid water cloud regularly occur in mid-latitudes 

[Hogan et al., 2004], but tend to have low integrated liquid water (ILW) content, so microwave 

radiometers have low sensitivity to them. Supercooled liquid water is also prevalent in mixed 

phase cloud associated with dynamic frontal systems. These can have substantial ILW and 

present a serious icing hazard to aviation. 

 

However, there is considerable uncertainty in the dielectric properties of liquid water below 

0°C. Meissner and Wentz [2004] presented a model of the dielectric constant of sea water 

based a double Debye relaxation fitted to observations including supercooled water. The 

model of Liebe [1989] provides a good fit to their model at T>-20°C and ν<100 GHz. The 

differences increase at lower temperatures and higher frequencies.  

2.3.3 Ice cloud 

Unlike liquid water, the dielectric constant of ice is nearly independent of frequency and 

provides very little loss in the microwave region. Ice crystals found in cirrus clouds and dry 

falling snow are virtually transparent at microwave frequencies because of their very low 

dielectric loss. It is only when ice particles become large – in convective storms, for example 

– that scattering becomes significant below 60 GHz. Wet snow results in absorption and 

scattering similar to that of large rain drops due to its size and liquid water content. 

2.4 Precipitation 
As discussed in §2.3, scattering becomes significant for particles larger than a small fraction 

of the wavelength and becomes increasingly efficient for larger particles. At the frequencies 

considered here (20-60 GHz), scattering is significant for rain drops, wet snow, wet hail and 

graupel. The sensitivity of brightness temperatures to precipitation and its implications for 

retrievals is discussed in this section. 

2.4.1 Extinction dependence on drop size and rain rate 

Like cloud, precipitation droplets follow a continuous size distribution, spanning more than an 

order of magnitude. The modal size, number density and vertical extent of precipitation 

typically increase with the intensity of the precipitation, causing microwave radiometers to be 

much more sensitive to heavier precipitation. 

 

Some early authors on the subject combined the effects of drop size, concentration and 

column height by measuring the extinction over a range of realistic conditions, and derived 

relationships between the extinction, κer and rain rate, Rr . e.g. Crane [1971] presented a 
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logarithmic model of the form, κer = κ1Rr 
b where κ1 and b are coefficients that depend on 

frequency and polarisation. Extracting the relevant data from [Crane, 1971] for the average of 

V and H polarisations yields the results in Table 2-2: 

 

Table 2-2 Simple model of extinction from precipitation as a function of Rain Rate 
for the average of V and H polarisations 

Frequency

(GHz) k 1 b 0.1 1 10
24 0.105 1.045 0.009 0.105 1.16
30 0.180 0.990 0.018 0.180 1.76
40 0.345 0.920 0.041 0.345 2.87
50 0.508 0.868 0.069 0.508 3.74
60 0.670 0.815 0.103 0.670 4.38

Extinction (dB/km)             
at Rain Rate (mm/hr)

Coefficients from 
Crane (1971)

 
 

These data suggest a maximum rate of accumulation of drizzle of 0.1 mm/hr can be 

accommodated without compromising the accuracy of retrievals. A 300 m column of light 

drizzle at 0.1 mm/hr would introduce ~0.02 dB of loss at 50 GHz, which would contribute ~1 K 

to the zenith brightness temperature observed. This is approximately the limit of what could 

be resolved at this frequency because of the typical fluctuations in signal due to cloud 

variability. At higher frequencies, atmospheric absorption from oxygen is sufficiently strong for 

the extinction by light rain to be negligible.  

 

However, it is difficult to validate such models due to serious problems measuring extinction 

(radiometers and radars are affected by liquid water), rain rate (tipping bucket type rain 

gauges are slow to respond to drizzle), vertical distribution of cloud and rain liquid water 

content and their drop size distribution and its vertical distribution [Jones, 1995]. 

 

In heavier rain, as drop sizes exceed ~1 mm, they become more oblate. This introduces a 

polarisation dependence in their scattering cross-section, which has been exploited to 

discriminate liquid water from clouds and rain [Czekala et al., 2001]. 

2.4.2 Drizzle 

Drizzle drops are usually defined as ranging in diameter from 0.2-0.5 mm [AMS Glossary], 

although radar meteorologists consider droplets greater than 50 μm to be drizzle, due to the 

strong sensitivity of radar reflectivity to very small numbers of larger drops. The latter is typical 

of drizzle from maritime stratus commonly found in the British Isles. Such drops are much 

smaller than the wavelengths used by the radiometer, so scattering will be negligible, as seen 

in Figure 1-2. 
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2.4.3 Practical considerations 

In addition to extinction by airborne hydrometeors, liquid water on the radiometer’s window 

(radome) also contributes to the observed brightness temperature by both emission and 

scattering, depending on the drop sizes. If this is allowed to accumulate, it will soon dominate 

the atmospheric signal. For example, a typical cloud may have an Integrated Liquid Water of 

100 g/m2. This is equivalent to a 100 μm thick layer of water on the radome. 

 

To mitigate the effect of rain and condensation from dew or fog, microwave radiometers are 

often fitted with blowers and hydrophobic radomes. But even with these, there may still be 

residual water on the radome during and after precipitation, which influences the signal similar 

to rain droplets in the air. Ware et al. [2004] showed a new radome coating allows unbiased 

retrieval of Integrated Water Vapour (IWV) from zenith Tb observations at rain rates up to 

~1 mm/hr. This is consistent with the findings of this study comparing IWV retrieved by the 

radiometer and GPS with a co-located tipping bucket rain gauge (§5.5.2). It was also found 

that the difference between these IWV retrievals returned to nominal levels within a few 

minutes of the cessation of precipitation. 

2.4.4 Maximum Integrated Liquid Water (ILW) 

The Integrated Liquid Water path can be used as a simple check on the likelihood of the 

presence of precipitation. ILW can be retrieved from microwave radiometer observations as 

described in §1.3.1. In this study, the retrievals of temperature and humidity were compared 

to radiosondes at different levels and found to be independent of ILW for ILW<1000 g/m2 

(§6.5). However, the retrievals became noticeably biased for higher values of ILW due to 

scattering by precipitation forming by coalescence within the cloud. Hence this is taken as 

empirical threshold for ILW as a quality control throughout this study to indicate the presence 

of rain which may not reach the ground or be detected by the radiometer’s rain sensor.  

2.4.5 Data availability due to precipitation 

The weather codes reported at the time of launch of radiosondes from Camborne were 

analysed over 1 year [Hewison and Gaffard, 2003]. The results showed that precipitation was 

reported 18.4% of the time, but more than half of this was slight rain or drizzle (less than 0.5 

mm/hr). This suggests that even in Camborne’s maritime climate, more than 90% of data 

should be uncontaminated by precipitation. 

2.4.6 Rain Water Content 

As drizzle particles only contribute to microwave radiances by emission, their effect is 

indistinguishable from that of liquid water cloud. So, the ideal choice of control variable for the 

retrieval would be the total liquid water – including clouds and rain. In practice, drizzle is 

unlikely to contribute a significant fraction of this total, so it may be neglected. However, 
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active instruments are more sensitive to the drop size of the scatterers, so it may be 

preferable to separate these terms in the control variable when combining observations from 

microwave radiometers and wind profilers or cloud radars. 

2.4.7 Implications for retrievals 
Accurate modelling of scattering by larger hydrometeors needs accurate data on their 

microphysical parameters which are not typically available in NWP models. Hence, it is likely 

that any observations in moderate to heavy precipitation will need to be rejected from the 

assimilation cycle, at least initially. This introduces a need for quality control to detect the 

presence of precipitation heavy enough to introduce significant scattering at the frequencies 

being used. This may be implemented by (the last two are used in this study): 

• Looking for a polarisation difference – if available (not at zenith). 

• Monitoring the residuals of the observations compared to the forward-modelled 

background as part of the assimilation process. A Tb excess, correlated with 

frequency is a tell-tale sign of scattering from precipitation. This is used in the 

operational processing of data from space-borne microwave radiometers. 

• Checking the data from a co-located rain sensor (although this will not detect any 

precipitation unless it reaches the surface).  

• First performing a simple retrieval of Integrated Liquid Water (ILW) and rejecting any 

observations where this is greater than a climate-dependent threshold (§4.8.3). 

2.5 Speeding up Radiative Transfer Calculations  
The line-by-line models described in §2.2.5 rely on summing the influence of every line in 

their database to calculate the absorption at a single frequency. This is a computationally 

expensive process, taking time tlxl. This becomes problematic when repeatedly evaluating it to 

calculate the matrix of the forward model’s partial derivatives, known as the Jacobian, by 

brute force (see §4.5.1). To speed up the calculation a number of approximations and 

parametrizations can be made, in addition to reducing the number of lines in the 

spectroscopic database and truncating each line’s influence mentioned in §2.2. These are 

described in this section. 

2.5.1 Is a fast model needed?   

For a line-by-line model to calculate the brightness temperatures at n=12 frequencies with a 

profile of temperature and humidity defined at m=38 levels takes n.m.tlxl ≈38 ms using un-

optimised PV-Wave code on a Linux workstation with a single 2.4 GHz Pentium-IV processor. 

To evaluate the Jacobian, H, using brute force by perturbing each of 2m levels of the profile 

would take 2.m2.n.tlxl ≈ 2.9 s. Using a non brute-force method to calculate Jacobians requires 

the differentiation of the forward model, but only takes twice as long as running the forward 

model itself. In principle, exact minimisation of a cost function, J, requires 2(m+1) evaluations 
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of J and H, which would take 4(m+1).m2.n.tlxl ≈ 225 s by brute force. This is longer than the 

possible sampling interval of a microwave radiometer and is regarded as impractical. This 

could be reduced by: 

• Differentiating the forward model to calculate H –  a factor of ~100 

• Using some form of fast forward model – maybe by a factor of ~100 

• Improving the code of the forward model – maybe by a factor of ~10 

• Using approximations in minimisation – maybe by a factor of ~10 

• Using faster computers   – maybe by a factor of ~2 

2.5.2 Representation of channels’ finite bandwidth 

Radiometers’ channels are not truly monochromatic – they have finite bandwidths to reduce 

their radiometric noise. Heterodyne systems usually have a spectral response with one side 

bands on either side of a central frequency with central stop band to reject interference from 

the local oscillator (§3.1.3). However, the atmospheric absorption changes across the 

bandwidth of each channel. If it changes nonlinearly with frequency, a model of Tb evaluated 

at the channel’s centre frequency can be significantly biased. To overcome this, the channels’ 

passbands have been sampled at high spectral resolution and radiative transfer calculated for 

each frequency and the resulting Tbs averaged – the band-averaged Tb. However, this is 

computational expensive for a relatively small correction (~0.1 K), so it is desirable to use an 

effective monochromatic frequency (EMF) for each channel. The EMF was selected to 

correspond to the monochromatic frequency that minimises the difference with the band-

averaged Tb for a representative data set of atmospheric profiles. As we will show in this 

section, the EMF does not always correspond to the nominal central frequency. 

 

Figure 2-3 – Tb  spectrum near 22.235 GHz channel of Radiometrics TP/WVP-3000. 
Calculated using Ros98 for 1976 US Standard Atmosphere in zenith view. 

Red crosses indicate the passband of the 22.235 GHz channel. Blue cross shows Tb  
evaluated at the channel’s centre frequency. Blue diamond shows the band-averaged 

Tb  and the Equivalent Monochromatic Frequency (EMF) at which this occurs. 
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From the TUC set of radiosonde profiles, Tbs were calculated for each channel at 40 

frequencies separated by 5 MHz steps and located in a 200 MHz window centred at the 

nominal central frequency. Those were convolved with the channels’ passband response 

(assumed rectangular) to calculate the band-averaged Tbs. Then, for each profile and for each 

channel, the frequency corresponding to the minimum difference with respect to the band-

averaged Tb was identified as the EMF. This process is illustrated in Figure 2-3. The resulting 

EMFs shown in Table 2-3 are broadly consistent with a similar analysis done using data from 

Camborne [Hewison and Gaffard, 2003]. Table 2-3 also shows the statistics of the Tb 

differences between calculations at the nominal centre frequency, band-averaged and EMF. 

The mean Tb difference between band-averaged Tb and that evaluated at the centre 

frequency is less than 0.36 K, the largest values being found at 51 to 54 GHz channels, 

where the absorption changes most rapidly with frequency. Thus, the effect of a finite 

bandwidth is small, but not negligible. Because the SD is very small (less than 0.1 K) for all 

but the 22 GHz channel, most of the channels could take this effect into account as a mere 

bias.  However, using the EMF reduces the uncertainty to negligible levels, so this approach 

has been adopted for the remainder of this study. 

2.5.3 Fast Absorption Predictor (FAP) 

To speed up the calculation, a Fast Absorption Predictor model is used to calculate the 

absorption as a third order polynomial function of pressure, temperature and specific 

humidity, following Löhnert et al. [2004]. The polynomial coefficients are derived a priori using 

a set of profiles by regression of the brightness temperatures modelled by a line-by-line model 

for each channel against the pressure, temperature and humidity at each level. This is only 

applied to pressures greater than 100 hPa as it was found to be inaccurate above this. At 

lower pressures, H is not re-calculated, so this does not slow down the iterative calculations. 

 

The data set of model profiles was divided in two – half was used to train the FAP model, the 

other half to validate it against Tb predicted by the line-by-line model used for the training. The 

statistics of this comparison, given in Table 2-3, show that FAP results in satisfactory levels of 

random error (i.e. smaller than the error of representativeness as will be shown in §4.4.1).  
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Table 2-3 - Centre frequency and equivalent monochromatic frequency (EMF) of 
Radiometrics TP/WVP-3000 calculated from TUC radiosondes, showing mean (bias) 

and standard deviation (SD) of difference in brightness temperatures, Tb, calculated at 
these frequencies and using Fast Absorption Predictor (FAP) compared to that 

averaged over the channels’ passbands (band average). 

Centre 
Freq.

EMF

Bias SD Bias SD Bias SD

(GHz) (GHz) (K) (K) (K) (K) (K) (K)
22.235 22.205 -0.144 0.289 -0.004 0.004 0.006 0.111
23.035 23.040 -0.021 0.009 -0.001 0.006 -0.030 0.205
23.835 23.835 0.000 0.001 0.000 0.001 -0.121 0.334
26.235 26.230 0.004 0.001 0.002 0.002 -0.249 0.331
30.000 30.005 0.001 0.000 0.000 0.000 -0.190 0.265
51.250 51.255 0.139 0.005 -0.005 0.003 -0.010 0.475
52.280 52.285 0.360 0.013 -0.099 0.014 0.031 0.433
53.850 53.855 0.348 0.047 0.056 0.052 0.007 0.166
54.940 54.935 -0.032 0.008 0.006 0.016 0.006 0.025
56.660 56.655 -0.003 0.002 0.001 0.001 -0.002 0.005
57.290 57.285 -0.001 0.001 0.000 0.001 -0.001 0.004
58.800 58.800 0.001 0.001 0.000 0.000 -0.002 0.005

Tb(centre freq) - 
Tb(band average)

Tb(EMF) -         
Tb(band-average)

Tb(FAP) – Tb(EMF)

 
 

2.5.4 RTTOV (Radiative Transfer for TOVS) 

RTTOV [Saunders et al., 1999] is a fast radiative transfer model for nadir-viewing passive 

infrared and microwave satellite radiometers, spectrometers and interferometers. Given an 

atmospheric profile of temperature, water vapour and, optionally, ozone and carbon dioxide, 

together with satellite zenith angle, surface temperature, pressure and, optionally, surface 

emissivity, RTTOV will compute the top of atmosphere radiances in each of the channels of 

the sensor being simulated. In addition to evaluating Tb using the forward model, RTTOV also 

returns its Jacobian matrix and its tangent linear values, either of which is needed for 

variational retrieval methods (see Chapter 4).  

 

The coefficients used in RTTOV need to be specially trained for each instrument’s channels 

and viewing geometry. However, the basic geometry assumed corresponds to nadir-viewing 

satellite instruments, and would need significant modification to adapt it to ground-based 

applications. Despite the benefits of providing a fast method of evaluating the forward model 

and its Jacobian, this effort was not justified for the purposes of this thesis. This may be 

reviewed in any future operational application where computational speed is of greater 

importance. 
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2.6 Profile Representation 
To calculate Tb for any microwave radiometer sensitive to atmospheric emission, it is 

necessary to represent the atmospheric conditions along its optically path in the RTM. In this 

case, the vertical profile of pressure, temperature and specific humidity and liquid water (p, T, 

q, l ) needs to be discretised to a manageable number of levels to allow fast calculation of Tb. 

The RTE (2.7) is then evaluated by integrating the emissions over the average (p, T, q,  l) 

between the profile levels. Therefore, the choice of levels for discretisation represents a 

compromise between efficiency and accuracy of calculation. If the level spacing is too large to 

represent features of the profile that generate significant microwave emission, errors will be 

introduced in the modelled Tb. 

 

In this study atmospheric profiles are derived from radiosondes and NWP models, which are 

discussed below. 

2.6.1 Radiosonde profiles 

Balloon-borne radiosondes can provide useful profiles of (p, T, q) for validation of radiometer 

observations and retrievals if they are sufficiently close in space and time. Modern 

radiosondes are capable of providing accurate profiles with high vertical resolution thanks to 

improved sensors, transmitters and receivers. For example, Vaisala claim a total uncertainty 

(1-σ) for their RS92 package of 0.75 hPa for pressure, 0.25 K for temperature and 2.5% for 

relative humidity with a response time of <0.5 s at low levels (the RH sensor has a much 

slower response in low temperatures). These specifications have been confirmed by 

comparison with other radiosondes, including devices using a chilled mirror hygrometer 

[Smout et al., 2005]. The reproducibility between sensors in dual flights was found to be 

excellent with a standard deviation of 0.5 hPa, 0.2 K and 2%RH. 

 

It is possible to quantify the likely magnitude of radiosonde errors and their impact on forward 

modelled Tbs by comparing the results from different sensors flown on the same balloon. This 

was done during the TUC experiment [Hewison et al., 2006]. The SD was found to be largest 

(~0.5 K) for the channels near 22 GHz and in the wings of the oxygen complex near 52 GHz 

most sensitive to water vapour, reducing to ~0.2 K for the channels nearer the centre of the 

60 GHz oxygen complex. 

 

In operational use, radiosondes are required to ascend at 5.0-5.5 m/s through the 

troposphere. Thus it takes ~ 2000 s to reach a typical tropopause height of ~10 km, during 

which time the balloon will have drifted with the wind from its launch location, typically ~10-

100 km. In the UK it is operational practise to sample the profiles at 2 s intervals, 

corresponding to a vertical resolution of ~10 m. However, their data are currently transmitted 

(and assimilated) in a format with degraded resolution.  Their profiles are first interpolated to a 
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set of 21 standard levels (only 6-8 of which are in the troposphere). Significant levels are first 

added at the surface and tropopause. Further significant levels are then added iteratively by a 

procedure which identifies where T or RH in the interpolated profile deviate by more than 1 K 

or 10% from the original. This is referred to as the TEMP code message and reduces data 

volume by a factor of ~100 compared to the 2 s data. These thresholds have been 

experimented with here to establish how much error is introduced by this discretisation 

process (§2.6.3). 

2.6.2 Mesoscale model levels 
Profiles from the Mesoscale version of the Met Office Unified Model (§1.1.1) in this study 

used a staggered Charney-Phillips vertical grid (G3), where T and q are defined at the surface 

(1.5 m) and on 38 levels and p, ρ and winds are defined at intermediate layers. These levels 

are more concentrated in the boundary layer (see Figure 2-4), which is convenient for our 

retrievals.  

 

Figure 2-4 – G3 levels of Met Office Unified Model. Black lines show levels at which 
temperature and humidity are defined. Red dotted lines show intermediate levels for 

pressure, density and winds. (Right-hand panel is a zoom of the left hand panel.) 

 

The UM has since been revised to a 50 level model by the addition of extra levels in the 

stratosphere and above. This change would not affect these retrievals. However, possible 

future improvements in the vertical grid will reduce the errors due to discretisation.  
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2.6.3 Impact of profile discretisation 

It is important that the discretisation of the profile does not introduce excess errors in Tb 

calculated by the RTM. To test this, a set of high-resolution radiosondes was used as input to 

the RTM and the Tb calculated for the 12 channels of the Radiometrics TP/WVP-3000. These 

were compared with Tb calculated using the same profiles reduced by different methods of 

discretisation. WMO Standard and UMG3 refer to profiles which have been interpolated at 

standard and mesoscale model levels only, respectively. TEMP refers to profiles that have 

been interpolated to WMO standard levels then extra levels added iteratively, defined as 

above. Significant is an improved version of this method, with tighter tolerances on departures 

from the original (0.5 K and 5 %RH), and subsequently more levels, but smaller errors. Neural 

Network refers to the fixed vertical levels used in the neural network retrievals: every 100 m 

from the surface to 1 km, then every 250 m up to 10 km (§5.2.1). 

 

Table 2-4 Bias and r.m.s. error introduced to zenith brightness temperatures modelled 
for 57 clear radiosonde profiles using different discretisation methods 

Channel
Frequency

Bias rms Bias rms Bias rms Bias rms Bias rms
(GHz) (K) (K) (K) (K) (K) (K) (K) (K) (K) (K)
22.235 0.15 0.21 0.38 0.55 -0.02 0.22 0.96 1.73 0.01 0.11
23.035 0.12 0.19 0.34 0.50 -0.04 0.21 0.88 1.63 0.01 0.11
23.835 0.09 0.14 0.25 0.38 -0.05 0.18 0.67 1.30 0.00 0.09
26.235 0.04 0.07 0.12 0.18 -0.05 0.11 0.31 0.65 -0.02 0.05
30.000 0.03 0.05 0.08 0.12 -0.06 0.09 0.20 0.42 -0.03 0.04
51.250 0.07 0.09 0.15 0.20 -0.39 0.47 0.48 0.60 -0.34 0.26
52.280 0.06 0.07 0.13 0.16 -0.46 0.56 0.41 0.49 -0.39 0.31
53.850 -0.02 0.03 -0.03 0.07 -0.36 0.42 -0.18 0.31 -0.28 0.24
54.940 -0.07 0.09 -0.14 0.18 -0.08 0.09 -0.63 0.74 -0.06 0.05
56.660 -0.06 0.11 -0.10 0.19 -0.04 0.06 -0.45 0.71 -0.06 0.10
57.290 -0.06 0.12 -0.09 0.20 -0.03 0.06 -0.39 0.71 -0.07 0.12
58.800 -0.06 0.13 -0.09 0.23 -0.03 0.06 -0.32 0.74 -0.08 0.14

Neural NetworkSignificant TEMP UMG3 WMO Standard

 

The results are shown in Table 2-4 show that interpolating profiles at Standard levels only 

introduces significant errors in all channels. The TEMP code version of the profile adds 

substantial uncertainty in the channels near the water vapour line, but its errors are 

approximately halved by halving the tolerances for temperature and humidity departures in 

the Significant scheme. The levels used in the Neural Network retrievals, however, introduces 

similar, low error levels to all channels. Interpolating to UMG3 levels improves this for all 

except those channels on the edge of the oxygen band, which are dominated by other errors 

(§4.4.1.4). This shows that the UMG3 levels are suitable for use in retrievals without 

introducing excess noise.  
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The covariance of these discretisation errors is a significant component of the forward model 

error (§4.4.1.2), and includes substantial correlation between the channels close to the centre 

of the 22 GHz water vapour line and between channels on the edge of the oxygen band. 

2.6.4 Atmospheric propagation path 
In the case of a zenith viewing instrument, the RTE integration is straightforward – vertically 

along the propagation path. However, as a radiometer scans towards the horizon, corrections 

are needed due to the bending of the path by refractive index gradients and to account for the 

Earth’s curvature. Han and Westwater [2000] showed these effects were small (<0.2 K) for 

zenith angles less than 75°, so these can be neglected here, as there are other practical 

problems in exploiting radiometer observations close to the horizon, as will be discussed in 

§3.2.1. 

 

At high zenith angles, it can also become important to account for the finite beamwidth of the 

microwave radiometer. This can be addressed by use of an effective zenith angle, increased 

slightly from the true angle by an amount depending on the atmospheric opacity and 

beamwidth – see §3.2.1. 

2.6.5 Topping-up profiles 

Radiosonde balloons usually reach 20 – 30 km before bursting. This can leave much of the 

stratosphere and all the mesosphere unrepresented in the profile used in the RTM. Although 

this part of the atmosphere has a very small contribution to Tb measured at the surface, it is 

possible to correct for this by appending a reference profile [McClatchey et al., 1972] above 

the upper limit of the radiosonde measurements. Given the poor performance of some 

radiosonde hygrometers at the low temperature and humidity in the stratosphere, it is 

advisable to also substitute their measurements here with a reference profile. It was found 

that the choice of reference profile used for this top-up produced negligible differences to the 

modelled Tbs.  

 

This is less problematic when using profiles from the mesoscale model, as the uppermost 

level of these is at 39 km currently. Although the temperature profile may not be very accurate 

near the model top, ground-based radiometers will be quite insensitive to errors here. Also the 

assumption of local thermodynamic equilibrium breaks down at higher levels (>70 km) and 

the atmospheric constituents become increasingly monatomic and require separate treatment 

in radiative transfer calculations, although their contribution to Tb at the surface is negligible. 

2.6.6 Representing cloud in profiles 

Radiosondes do not measure liquid water, so cannot be used to validate the retrievals’ cloud 

parameters. The mesoscale model includes prognostic cloud liquid water content at each 
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level of the profile. This can be used as first guess for retrievals and its covariance estimated 

by the NMC method [Parish and Derber, 1992], as explained in §4.3.2. 

2.7 Validation of Radiative Transfer Models 
Radiative Transfer Models (RTMs) and their component models of absorption and scattering 

by different media are often developed from theoretical bases which usually include 

assumptions and approximations or are based on laboratory measurements. When these 

models are applied to real world situations their validity should be checked against 

observations of the model’s predictand. Validation is part of an iterative cycle of model 

development, allowing refinement of certain model parameters. Validation can be used to 

investigate the model’s systematic biases, estimate its accuracy and also check it is capable 

of representing the full range of observed conditions. 

 

Validation needs to include measurements of all model inputs, together with estimates of their 

uncertainty. Care is needed to ensure the observations of model inputs accurately represent 

the range of conditions influencing the model’s predictand – this is a problem of sampling the 

observed scales at sufficient resolution and coverage. Often the uncertainty introduced by 

representativeness dominates the error budget of the validation experiment. The uncertainty 

in each component of the validation should be analysed – both in terms of random 

uncertainties which may be reduced by averaging and systematic biases (which may not). 

 

A range of techniques can be applied to validate different aspects of RTMs, including: 

2.7.1 Laboratory measurements for model validation 
Although it is not always possible to reproduce real world conditions, laboratory 

measurements allow model predictors to be varied in a controlled way. This makes it easier to 

isolate the influence of each predictor, which is difficult in nature. It is also much easier to 

ensure observations of model inputs and outputs are representative in a lab environment, as 

the sampling can be controlled, though it may not be possible to explore the full range of 

parameter space. 

 

The measurements of resonance spectrometer attenuation by Liebe and Layton [1987] 

illustrate this technique. They measured the absorption at 138 GHz over the range of  281-

316 K, 0-3 bar in pure water vapour and a water vapour/nitrogen mix. These measurements 

were used empirically to fit the coefficients of self- and foreign- broadened water vapour 

continuum, including their temperature coefficients. The temperature and partial pressures of 

water vapour and nitrogen in the resonance cell were measured and controlled. If the 

chamber is homogeneous and in steady-state, the measurements are assumed to accurately 

represent the conditions influencing millimetre-wave absorption. However, this does not 

necessarily represent the full range of conditions found in nature. 
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2.7.2 Validation by ground-based radiometers and radiosondes 

Ground-based radiometer or spectrometer measurements can be used for validation of RTMs 

given in situ observations of the model’s input variables – typically from co-located 

radiosondes. If long-term data sets are available, it is possible to validate the full range of a 

model’s inputs for a single site. As both the radiometer and radiosonde sample similar, small 

spatial volumes, representativeness error can be minimised if the validation is performed in 

homogeneous conditions. It is extremely difficult to validate cloud absorption models because 

of the large spatial and temporal variability of cloud properties and the shortage of good 

quality in situ measurements of microphysical parameters needed, so validation by this 

technique is limited to atmospheric absorption models in clear air. This technique is applied to 

radiometer observations from Camborne in §3.4.2. 

 

Cimini et al. [2003a] compared observations of ground-based microwave radiometers at 20-

30 GHz with coincident radiosonde profiles in clear air modelled using Ros98. They found a 

dry bias of ~5% using Vaisala RS80 humidity sensors, which was much reduced with RS90 

sensors. Westwater et al. [2003] used similar radiometers in the tropics, but found variability 

in radiosonde humidity sensors dominated differences between absorption models at 

23.8 GHz. They showed that MPM87 fitted observations better than Ros98 at 31.4 GHz, 

which is dominated by the water vapour continuum. Earlier work [Westwater et al., 2001] had 

shown that Ros98 best fitted observations at 31.4 GHz in cold, dry arctic conditions. 

 

Cimini et al. [2003b] conducted a similar analysis on data from 4 radiometers with a total of 19 

channels between 20-59 GHz. They found that of these models Ros98 gave the best results 

at 20.6-20.7 GHz channels, while MPM93 was preferable close to 22.2 GHz. These 2 models 

stayed within 0.3 K at 23.8 GHz, but Ros98 gave the best results in the atmospheric window 

(~30 GHz), where emission is dominated by the water vapour continuum. Three models 

(MPM87, MPM93, and Ros98) showed a sharp change, from +2 to -2 K, when comparing 

51.2 and 52.2 GHz channels with observations. At higher frequencies (55-60 GHz), they 

found the models were almost equivalent, but showed a negative bias (~1 K) with respect to 

radiometric observations. 

 

Liljegren et al. [2005] analysed 5 channels between 22-30 GHz and showed that using a 5% 

smaller width of the 22.235 GHz line in Ros98 resulted in smaller bias in comparison with 

observed Tb and in retrieved profiles. Even temperature profiles above 3 km were improved 

by this modification, which is strange, as this information comes from the 51-52 GHz 

channels, which should not be sensitive to the width of this line. However it may be possible 

that the consistency between 20-30 and 51-53 GHz channels might improve the retrievals. 

Their results also suggested that replacing the Ros98 water vapour continuum with MT_CKD 

[Mlawer et al., 2003] improved the fit with Tb trends. Mattioli et al. [2005] compared Tbs from 3 

co-located Radiometrics instruments, each with channels at 23.8 and 31.4 GHz using 2 
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calibration algorithms, with Vaisala RS90 radiosonde measurements forward modelled with 

various absorption models. Their results supported the modification of the continuum 

proposed by Liljegren et al. [2005], but not the change in width of the 22 GHz line. 

 

A similar analysis was performed as part of this study [Hewison et al., 2006] using 

observations from TUC (§1.5) in a winter continental climate. The results show a systematic 

bias in the brightness temperatures measured by the Radiometrics profiler at 55-59 GHz, 

which has since been corrected in the control software. Observations at lower frequencies 

(22-30 GHz) in these cold conditions do not support Liljegren’s proposed changes to the width 

of the 22.235 GHz water vapour line, although this is subject to the assumption of no residual 

bias in the radiosonde humidity. In these conditions, MPM89 and Ros98 provided the best fit 

to the radiometer observations. At intermediate frequencies (51-54 GHz), the absorption 

models produce large differences, which may be due to differences in oxygen line coupling 

[Boukabara et al., 2003] and highlight the need for further laboratory measurements at low 

temperatures. 

2.7.3 Airborne radiometer/spectrometer and in situ sampling 
Installing a radiometer on a research aircraft offers the attractive potential to simultaneously 

sample the radiative and in situ properties of the atmosphere. With careful experiment design, 

this can ensure errors of representativeness are minimised. For example, the aircraft can 

provide a profile of pressure, temperature and humidity for input to a radiative transfer model. 

This can be compared with radiances measured in clear skies during level runs to validate the 

absorption models. This is akin to comparing a ground-based radiometer with forward 

modelled radiosondes, although the analysis can be repeated at different levels in the 

atmosphere. The errors of representativeness can be further reduced by comparing radiance 

measurements made during an aircraft profile with in situ measurements. The absorption can 

then be calculated over atmospheric layers for which simultaneous measurements are 

available. However, this requires careful control of the radiometer’s calibration, which can 

change with temperature during aircraft ascents/descents. Hewison [2006] used this 

technique to validate absorption models at 89, 157 and 183 GHz, and found all models to 

underestimate the observed absorption in very dry conditions in the window region, while 

MPM93 tended to overestimate the strength of the water vapour continuum in warm, humid 

conditions. 

 

English [1995] compared models and measurements of liquid water cloud absorption from the 

same airborne radiometer using in situ measurements of liquid water content. He found this to 

be very variable on small spatial scales. 
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2.7.4 Satellite measurements with in situ data 

Satellite observations of model predictands are able to represent their global range of 

conditions. However, in practice, careful data selection is needed to isolate the variable of 

interest from the other factors which may also influence the scene radiance. The need for in 

situ measurements of model input variables also imposes stringent selection criteria. This 

may reduce a huge global data set to a small number of satellite observations co-located with 

in situ observations – e.g. radiosondes, buoys. Co-location is needed both in spare and time. 

With polar-orbiting satellites, this can reduce the available data set for comparison to zero. 

 

The fundamental problem in using satellite data to validate RTMs with in situ data is that 

these observations sample different spatial scales. The co-location criteria must be chosen by 

consideration of the spatial and temporal variability of the parameters in question. To 

minimise errors due to representativeness, it is often necessary to impose criteria on the 

variability of observations – both spatially for satellite data and temporally for in situ data. 

 

An example of this technique is given by Buehler et al. [2004]. They compared radiances from 

the 183 GHz channels of the Advanced Microwave Sounding Unit (AMSU-B) with forward 

modelled radiances from radiosonde profiles. Comparisons were only made for satellite data 

within 30 minutes of the nominal time for radiosondes launched from Lindenberg, Germany 

and where the sonde drifted by less than 50 km before reaching the tropopause. They also 

filtered the data to reject dense ice cloud. Although this technique includes contributions from 

errors in the radiometers and in situ observations, radiative transfer model as well as 

uncertainty in the representativeness of the two observations, Buehler et al. were able to 

show their results were consistent with a dry bias in radiosonde humidity sensors in very dry 

conditions. Subsequently, this has been suggested as a method of evaluating the accuracy of 

different radiosonde observations. 

2.7.5 Validation with Numerical Weather Prediction analysis 

Another technique to exploit satellite data for model validation is by comparing it with 

Numerical Weather Prediction (NWP) analysis fields in lieu of in situ data. They have the 

advantage of global availability and, often, lower errors of representativeness, as they are 

sampled on scales similar to the resolution of space-borne microwave radiometers (~10 km). 

The underlying assumption is that the NWP field represents an unbiased state of the 

atmosphere as it is constructed to be consistent with a diverse set of current and past 

observations. A common method is to monitor the Observation-minus-Background (O-B) 

residuals as part of the variational assimilation of observations into NWP. This process 

calculates differences between the observations and the NWP model’s short-range forecast. 

These residuals often shown systematic biases, which can be further analysed in multivariate 

space – e.g. as a function of temperature, humidity, pressure, wind speed, scan angle, etc.  
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It is inevitable that this technique includes the observations’ and the NWP model’s bias as 

well as the RTM. However, these are equivalent from a data analysis point of view and their 

differences can be corrected empirically as part of the assimilation process as if they were all 

due to observation biases. 

 

Ellison et al. [2003] applied this technique to validate models of ocean emissivity. They 

compared observations from various space-borne microwave radiometers with the models’ 

predictions based on various NWP models. To isolate the component of interest (the 

permittivity of sea water), they filtered the available data sets to remove the influence of liquid 

water cloud and high wind speeds, which induce surface spray/foam. The results were then 

analysed over different temperature regimes.  A similar technique was also used by Meissner 

and Wentz [2004] to validate a new fit to laboratory measurements of the permittivity of pure 

and sea water. They showed this model provides the best fit to SSM/I observations over a 

range of temperatures and frequencies when applied to sea surface emissivity. Their new 

model produced similar results to other models when applied to cloud liquid absorption 

(including super-cooled conditions). 

 

It is also possible to apply this technique to observations from ground-based measurements, 

although this introduces the problems of representativeness due to different sampling scales. 

2.7.6 Choice of clear air absorption model 
Based on the validation work described above no single absorption model clearly performed 

best over a wide range of conditions. MPM93 was found to over-estimate the water vapour 

continuum in warm, humid conditions, while MPM89 and Ros98 generally had low bias 

compared to observations. Ros98 was selected as the default absorption model for this study 

on the basis that it has fewer spectral lines in its database, so should be provide faster 

calculations.  

 

2.8 Infrared Radiative Transfer Model 
The Radiometrics TP/WVP-3000 system incorporates a zenith-viewing infrared radiometer – 

the Heimann KT19.85 (§3.1.6). This measures the infrared radiance in the 9.6-11.5 μm 

window to give information on cloud base temperature. If its observations are to be included 

in the retrieval a forward model is needed. 

 

A simple forward model defines the infrared brightness temperature, Tir, as the temperature of 

the lowest level with any cloud. However, this would give sharp transitions in Tir when cloud 

starts to form if the humidity in a model layer increases. A slightly more sophisticated radiative 

transfer model is developed here, which accounts for absorption by atmospheric water vapour 
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and finite extinction in liquid water cloud. This model gives more Gaussian error 

characteristics and smoother Jacobians, due to less abrupt transitions at cloud boundaries.  

 

Although it is common to express the signal from infrared radiometers as brightness 

temperatures, the Planck function does not allow the Rayleigh-Jeans approximation to be 

used, as the radiance is not linear with Tb. Hence, its radiative transfer calculation must be 

conducted as radiances, starting from zero at the top of the atmosphere. Once the radiance 

has been propagated down to the surface, it is converted to the infrared brightness 

temperature, Tir, and a threshold of 223.2 K is applied as this is the lower limit of the 

instrument’s range. 

 

If the measurements of cloud emissivity reported by Chylek and Ramaswamy [1982] are 

linearly averaged across the 9.6-11.5 μm band, an extinction coefficient of 0.072 m2/g is 

suggested. However, when this was applied to forward model Tir from radiosondes or 

mesoscale model data, it was found to underestimate Tir compared with its observed 

distribution over the course of several months. Bloemink et al. [1999] observed that typical 

clouds become optically thick at λ=9-12 μm when their Integrated Liquid Water (ILW) content 

exceeds 20 to 30 g/m2. If this is interpreted to mean a liquid water cloud has unity opacity 

when ILW=0.03 kg/m2, it implies an extinction coefficient of 33.3 Np/km.(kg/m3)-1. This 

extinction coefficient was found to improve the distribution of forward modelled Tir compared 

to the observations.  
 

Ice cloud is treated in the same way as liquid in the infrared forward model, as unlike 

microwave frequencies it has a strong influence on Tir.  

 

Although the nominal minimum value of Tir measured with the radiometer is 223.2 K, higher 

values are often observed in clear skies in warm, humid conditions. This is because it is also 

sensitive to emission from atmospheric water vapour as a result of its weak emission lines 

and continuum in the 9-12 μm band. Although it is possible to model these accurately using a 

line-by-line model, this would be too slow for operational applications, so it has been 

parametrized empirically here. An extinction coefficient due to water vapour of 

0.02 Np/km.(kg/kg)-1 has been estimated based on comparisons of time-series of observed Tir 

with those calculated from the forward model, based on mesoscale model profiles.  
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2.9 Summary of Radiative Transfer Modelling 
This chapter described the radiative transfer model, which forms the core of the forward 

model used to transform state space to observation space. This is needed for all physical 

retrieval methods, along with estimates of its uncertainties.  

 

The radiative transfer equation and brightness temperatures were first defined. Then the 

emission mechanisms for atmospheric oxygen, water vapour and cloud and precipitation were 

discussed to provide a theoretical basis of radiative transfer modelling for both microwave and 

the thermal infrared. Different models were compared to estimate the uncertainty in the 

forward model due to spectroscopic errors. Other contributions to the uncertainty were also 

analysed, including those introduced by approximations made in the fast absorption model, 

channel averaging and profile discretisation. 

 

These models have been compared with observations to validate their predictions and assess 

their relative biases, which will bias the profiles retrieved from them. The absorption model of 

Rosenkranz [1998] was selected for use in this study. 

 



 45

Chapter 3 Microwave Radiometer Hardware 
This chapter describes the microwave radiometer used in this study – the Radiometrics 

TP/WVP-3000. Its principles of operation, components and calibration are introduced and 

compared with those of other radiometers. It is important to understand the instrument’s 

calibration accuracy and radiometric noise as these affect the accuracy of the products 

retrieved from its observations. These aspects of the system’s performance are analysed in 

this chapter, together with practical aspects of its operation. This understanding has helped 

improve the instrument further during the period of this work. Finally, likely future 

technological developments are presented and their implications discussed. 

3.1 Radiometer Design 
The Radiometrics TP/WVP-3000 system includes the microwave radiometer, sensors for 

atmospheric pressure, temperature and humidity, a rain sensor and an infrared radiometer.  

When the radiometer views the sky, incoming radiation is transmitted through a microwave 

window onto a planar scanning mirror and into a Gaussian optics antenna, comprising a 

dielectric lens, polarising grid (to couple two receiver bands onto a common axis) and two 

feedhorns. These feed two independent receiver chains, which are mounted in thermally 

insulated enclosures. The cut-away diagram in Figure 3-1 illustrates the components of the 

radiometer system, which are described in the following sections. 

 

Figure 3-1 Cut-away Diagram of Microwave Radiometer TP/WVP-3000 System 
[Courtesy of Radiometrics] 
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3.1.1 Microwave Window 

The microwave radiometer views the atmosphere through a dielectric window. This has now 

been treated with a hydrophobic coating, which was developed during the course of this 

study. Together with a stronger blower motor this was found to be effective at preventing the 

accumulation of liquid water, which would otherwise contribute to the radiometer’s signal 

(§5.5.2) in fog and light rain. The window has a dielectric loss of approximately 0.01 dB 

(0.2%) at 22-30 GHz [Mike Exner, Radiometrics, personal communication], so its thermal 

emission will contribute ~0.5 K to the receive signal in these channels. But since its loss is the 

same in each view, its thermal emission is effectively included in the calibration coefficients.  

3.1.2 Antenna System 

The antenna comprises all the quasi-optic components in the radiometer’s front end: the 

microwave window, scanning mirror, dielectric lens, polarising grid and corrugated feedhorns. 

Together they define the antenna response function, which is approximately Gaussian, with 

the 3dB beamwidth ranging from 6.2° at 22.235 GHz to 2.4° at 58.8 GHz [Radiometrics, 

2001]. The instrument’s beamwidth is chosen as a trade-off between antenna size (and cost) 

and resolution. The beamwidth becomes important when viewing low elevation angles 

(§3.2.1). 

3.1.3 Receiver 

The incoming radiation from the feedhorns is then mixed with a reference Local Oscillator 

signal from a frequency synthesiser to produce an Intermediate Frequency (IF) signal, 

ranging from 0-300 MHz. The frequency synthesiser centre determines the centre frequency 

of the radiation detected instantaneously by the radiometer, which is switched sequentially to 

allow the radiometer to sample different frequency bands, known as channels. Although any 

number of channels can be selected within the receiver’s 22-30 GHz and 51-59 GHz bands, 

the radiometer has been operated on a fixed set of 12 channels throughout this study, shown 

in Table 3-1. These values were derived as an optimal set by selecting those frequencies 

which produced eigenvalues with the maximum information content [Solheim et al., 1996]. 

There is a delay of 180 ms between sampling each channel, so it takes several seconds to 

sample a set of 12 channels, which can introduce random noise on the observations (§3.5). 

The stability of the frequency synthesiser is quoted as 20 ppm. This is equivalent to <100 kHz 

at 60 GHz and is not expected to contribute a significant uncertainty in the radiative transfer. 

 

Table 3-1 Channel characteristics of Radiometrics TP/WVP-3000 

Frequency 

(GHz) 22.235 23.035 23.835 26.235 30.000 51.250 52.280 53.850 54.940 56.660 57.290 58.800

Beamwidth 

(FWHM) 6.3° 6.2° 6.0° 5.5° 4.9° 2.5° 2.5° 2.5° 2.5° 2.4° 2.4° 2.4° 
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Massive amplification is needed to boost the incoming thermal signals to detectable levels. 

This is provided by low noise IF amplifiers with gain ~70 dB, which are highly sensitive and 

their output is prone to drift with small variations in temperature and power supply 

fluctuations.  

 

The signal is then passed through bandpass filters, which define the bandwidth of radiation 

that will be detected by the radiometer. These are common to all channels, which have dual 

sidebands with 3dB bandwidths of 150 MHz, centred 115 MHz from the channel centre. So 

the radiometer detects radiation in bands ±(40-190) MHz each side of the centre frequency. 

The response is assumed to be uniform over the bandwidth. 

 

The IF signal is converted to an analogue voltage by square law diode detectors, for which 

output is proportional to their input power. This is then further amplified before being digitised 

and integrated over a user-defined period – typically ~200 ms/channel. 

3.1.4 Alternative receiver designs 

Other microwave radiometers currently available, such as HATPRO [Rose et al., 2005] 

sample a fixed set of channels simultaneously by splitting the incoming signal between a 

discrete set of bandpass filters, referred to as a filterbank. This allows faster observing 

sequences at the expense of a greater component count.  In this way they can also exploit 

recent technological advances allowing direct detection of incoming radiation (after 

amplification), without the need to mix with a reference local oscillator. 

3.1.5 Surface sensors 

The Radiometrics TP/WVP-3000 incorporates ambient pressure, temperature and relative 

humidity sensors, mounted within the blower unit to ensure good ventilation and to minimise 

the effect of solar radiation. It also includes a rain sensor to detect precipitation and allow it to 

be flagged in subsequent retrievals. 

3.1.6 Infrared radiometer 

An optional infrared radiometer (Heimann KT19.85) is mounted on top of the instrument, 

which views the zenith in a small mirror. This uses a lens to produce a 5° beamwidth, which 

approximately matches that of the microwave radiometer’s channels in the water vapour 

band. This instrument detects radiation emitted in the 9.6-11.5 μm band, which is used to 

provide information on the cloud-base temperature. 
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3.2 Observations 
The radiometer’s scan mirror can be rotated to allow the receivers to detect incoming 

radiation at any arbitrary elevation angle (with a 0.45° resolution). It can also view an internal 

reference target (§3.3.1). A series of views can be scheduled sequentially under user control. 

3.2.1 Elevation scan 

The radiometer nominally views in the zenith direction, but can also measure a series of 

elevation angles, usually symmetric about zenith. The elevation scans can be used for tip 

curve calibration of the water vapour channels (§3.3.4) or to provide extra observations to 

improve the retrieval of temperature profiles (§5.4). However, observations away from zenith 

are subject to several additional sources of bias, described below, which should be corrected. 

 

At high zenith angles, the brightness temperature changes rapidly, and becomes sensitive to 

small errors in the beams’ alignment or the beamwidth over which radiation is integrated. This 

is illustrated in the schematic in Figure 3-2. The finite beamwidth can be accounted for by 

artificially increasing the zenith angle, following Appendix 1 of Han and Westwater [2000]. The 

vertical gradient of refractive index and Earth’s curvature cause small deflections of the 

radiometer’s beam from its nominal path, which can become significant as the atmosphere 

becomes optically thick and the radiometer is sensitive to emission over extended paths [Han 

and Westwater, 2000].  

 

 
 

Figure 3-2 a) Schematic diagram of observations at 7 elevation angles, ϕ, and  

b) example brightness temperatures at different ϕ for 30.000 GHz channel,  

highlighting beamwidth of channel (blue crosses) and nominal angle (red diamonds). 

 

Optically thin channels and those near the edge of the oxygen absorption band (51-52 GHz) 

are very sensitive to changes in elevation angle. If the radiometer beam is systematically 

misaligned in elevation, biases will be introduced in these observations at high zenith angles. 

a) b) 
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Examination of the brightness temperatures measured in nominally symmetric elevation 

angles on opposite sides of zenith show systematic differences as much as 6 K. This is most 

likely to be caused by misalignment of the instrument by ~0.5° – comparable to the accuracy 

with which it can be levelled manually on installation. To reduce the influence of this, 

brightness temperatures from angles on opposite sides of zenith are co-averaged. This 

reduces the uncertainty caused by instrument misalignment to <0.1 K. However, it relies on 

the assumption of horizontal homogeneity, which will be investigated in §5.4.1. 

 

Closer examination of the brightness temperatures measured in the 51-52 GHz channels 

shows they are not consistently asymmetric – they jump between 2 quantised levels several 

kelvin apart. This was identified as being due to different alignment triggering used to control 

the stepper motor, which has 0.45° resolution. This suggests that finer control is needed to 

ensure elevation angles are repeatable and accurate. 

 

The radiometer’s antennae are not 100% efficient and are also sensitive to emission from 

outside the main Gaussian beam in the form of antenna sidelobes. These can introduce bias 

at low elevation angles due to emission from the surface, which can have ~200 K contrast to 

the sky Tb at low frequencies. Analysis by Hewison and Gaffard [2003] suggested that as 

much as 2% of the power received by the 22.235 GHz channel at ϕ=20° may have been 

emitted from the surface, which would bias the Tb measured here by ~4 K. The antenna’s 

beam efficiency improves at higher frequencies, so this bias would reduce to ~0.6 K at 

30 GHz. 

 

No mirror is perfect. As the scan mirror rotates, the polarisation angle incident on it also 

rotates. Because the mirror’s reflectivity varies with polarisation angle, this can bias the 

brightness temperatures measured in all views [McGrath and Hewison, 2001], including those 

of the reference target. Hewison and Gaffard [2003] showed this does not bias the zenith 

view, as the polarisation angle incident on the mirror is the same as in the opposite view of 

the reference target. However, this effect can bias Tbs measured in other views by ~0.2 K, 

which can be significant in the tip curve calibration and retrievals from elevation scans. 

3.2.2 Observing Cycle 

The total integration time of each channel is user-configurable. This allows a trade-off 

between low radiometer noise for longer integrations and low atmospheric variability, which 

will be discussed in §7.1.5. Higher sampling rates may allow more realistic representation of 

small-scale structure in the atmosphere. Typically, the radiometer may be configured to 

integrate each of 12 channels for 170 ms, sequentially over a period of 7 s. In this way, views 

at 5 elevation angles and a view of the internal black body calibration target can be obtained 

in a 1 minute observing cycle. 
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The instrument is usually orientated to scan in the North-South plane. In this way views at low 

elevation angles can be screened to prevent contamination by the emission from the Sun 

using a simple time of day filter: avoiding the use of these views within 1 hr of local noon. 

3.3 Calibration of Microwave Radiometer 
To convert the radiometer’s output voltages, Vb, when viewing the sky into brightness 

temperatures, Tb, they must be compared to those measured viewing a reference scenes of 

known radiances to determine the system’s gain, G,  and offset, a. In the first instance the 

linear relationship is assumed: 

 = +b bV GT a  (3.1) 

 

This calibration against references must be performed sufficiently frequently that gain 

fluctuations do not contribute significantly to the overall error budget. References are provided 

by injecting signals from noise diodes in the receivers’ input and viewing an internal reference 

target. 

 

In a recent revision of the operating software, Radiometrics included an additional term in 

(3.1) to account for the nonlinear response of the radiometer’s detectors. This has a 

maximum magnitude ~1K for Tb ~ 200 K, but this correction is not expected to change with 

time, so it will only contribute to the bias, not the random error. This change was applied to 

data gathered during the later part of the data set analysed here. 

3.3.1 Noise Diodes 

Noise diodes generate stable white noise with Gaussian characteristics and can be switched 

on and off rapidly, requiring a settling time of only ~1 ms. One noise diode is coupled into the 

input of each receiver to inject a reference signal, which can be used to control the 

radiometer’s drift by alternating views of the scene with the noise diode active and inactive at 

high frequency (~100 Hz). The noise diode’s contribution to the signal is expressed in terms 

of an equivalent brightness temperature, TND, but does not provide an absolute reference and 

must be calibrated against an external reference (§3.3.4 and §3.3.5). In fact, TND includes a 

number of terms related to the loss of the receiver front end. This loss is dependent on the 

temperature of these components, so operationally a correction is applied based on the black 

body temperature and coefficients derived by Radiometrics during testing in an environmental 

chamber. The noise diodes are set up to produce typical values of TND ~200-300 K.  

3.3.2 Internal black body reference target 
The other reference scene that can be viewed regularly is the internal black body target.  

This comprises a microwave absorber, for which the emissivity is assumed to be one – so its 

brightness temperature is the thermodynamic temperature measured with thermometers, TBB.  
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The target’s emissivity is not expected to introduce significant bias because, if the emissivity 

is 0.99 for example, 1% of the power received by the radiometer will be that emitted by the 

antenna reflected by this surface and its temperature is likely to be within 3 K of the black 

body. Otherwise, the accuracy of the brightness temperature of the black body target is 

limited by that of the temperature sensors: 0.2 °C [Radiometrics, 2001], which has been taken 

as the uncertainty in TBB. This has a direct and linear impact on the final brightness 

temperatures. 

 

The target’s temperature is monitored by two sensors, for which the mean has a random error 

of 0.05 K. The target is not thermally controlled, and is typically ~10.5 K warmer than ambient 

with an r.m.s. rate of change over one year at Camborne of 1.6 K/hr. If its temperature is 

sampled within 1 min of the radiometer viewing it, temperature gradients should introduce 

negligible errors. 

3.3.3 System Equations 

Together, the noise diodes and black body target provide reference brightness temperatures 

against which the radiometer’s gain and offset can be calculated to calibrate its output voltage 

by the system equations: 

 
( )BB b

b BB
V V

T T
G
−

= −  (3.2) 

where 

 ( )BB ND BB

ND

V V
G

T
+ −

=  (3.3) 

where  Tb is the scene brightness (antenna) temperature,  

TBB is the temperature of the black body target,  

VBB , VBB+ND and Vb are the voltages measured by the radiometer when viewing the 

black body, the black body plus the noise diode and the scene, respectively, 

G is the gain, and  

TND is the brightness temperature of the noise diode.  

 

Because TND is added to the reference scenes, this system relies on extrapolating the 

calibration coefficients, which are derived for scenes with Tb>>TBB, while for typical scenes 

Tb~20-300 K. So it is important to estimate them as accurately as possible as this 

extrapolation can tend to amplify calibration errors.  

 

3.3.4 Tip curve calibrations 

The tip curve [Han and Westwater, 2000] is one method to derive an accurate reference 

scene temperature against which to calibrate a radiometer. This technique uses radiance 
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measurements over a range of elevation angles calculated using an initial estimate of the 

calibration coefficients to derive an accurate estimate of the true radiance at zenith. This is 

then used to update the calibration coefficients. The underlying assumptions are that the 

atmosphere is horizontally stratified and optically thin, such that its opacity is a linear function 

of the slant path. In these conditions, the radiative transfer equation (2.7) can be simplified to 

the following expression for the down-welling brightness temperature, Tb, at zenith angle, θ : 

 

 ( ) ( )sec sec1b MR CMBT T e T eτ θ τ θθ − −= − +  (3.4) 

 

where  TMR is the mean radiative temperature of the atmosphere,  

 TCMB is the effective brightness temperature of the cosmic microwave background,  

 τ is the opacity at zenith, 

θ is the zenith angle. 

 

The opacity over a range of zenith angles is calculated from measured Tbs, using equation 

(3.4), based on an initial calibration. For an optically thin, horizontally stratified atmosphere, 

the opacity is expected to increase linearly with slant path, secθ. 

 

Every few minutes the radiometer can take measurements at 5 or 6 angles, symmetric around 

zenith. The measurements are then fitted to the theoretical function to derive an estimate of 

the true zenith brightness temperature. If the fit is deemed satisfactory, equations (3.2) and 

(3.3) are then inverted to adjust TND. The values of TND for successful tips are logged and a 

weighted average of these is used to provide the ‘current’ value used in equations (3.2) and 

(3.3). In practice tips are usually only successful in cloud-free conditions. 

 

Systematic biases in the tip curve calibration were analysed in detail by Hewison and Gaffard 

[2003], following the methods described by Han and Westwater [2000]. The magnitudes of 

each term and uncertainties are summarised here. 

 

The current tip curve calibration uses a simple method to estimate TMR as constant for each 

channel, which can bias the calibrations at high or low temperatures. Although this had little 

impact on the water vapour channels, TMR was found to dominate the error budget when 

attempting to apply tip curve calibrations to higher frequency channels because the 

atmosphere becomes optically thick as we approach the centre of the oxygen band. The 

vertical gradient of refractive index and the Earth’s curvature have negligible impact on Tbs 

below 50 GHz for θ <70°. The correction for the radiometer’s finite beamwidth is small 

(<~0.1 K) and has low uncertainty for θ <60°. Similarly, averaging Tbs measured in opposite 

views reduces the impact of misalignment of the radiometer’s elevation angle on the tip curve 

to negligible levels. However, there are two important factors mentioned in §3.2.1 that were 



 53

not included in the analysis of Han and Westwater [2000]. One is due to changes in scan 

mirror’s reflectivity as it rotates, which can introduce a small bias in the tip curve ~0.2 K. The 

other is the systematic bias introduced by exposure of antenna sidelobes to emission from the 

surface at high zenith angles. This can introduce a bias of ~0.5 K for θ <60°, with a large 

uncertainty, which dominates the error budget of the tip curve calibration. If higher zenith 

angles are included in the tip curve, the biases in the lowest frequency channels (and their 

uncertainties) increase exponentially. It is recommended, therefore, that tip curves are applied 

only to zenith angles θ ≤60°. 

3.3.5 Liquid Nitrogen Calibrations 
The tip curve technique can only be applied to channels where the atmosphere is optically 

thin. So, another external reference is needed to calibrate TND  for the oxygen-band channels: 

a black body at cryogenic temperatures. For practical reasons these calibrations cannot be 

performed as frequently as tip curves, so allowing greater TND drifts. However, the typical Tb 

of these channels is much higher (shown in Table 3-2), so their calibration is less sensitive to 

errors in TND. Radiometrics recommend calibration every “several months” or after 

transporting the radiometer. 

 

Figure 3-3 Cryogenic Target used to Calibrate TND for 51-59 GHz channels. 

 

The manufacturer supplied a calibration target, illustrated in Figure 3-3, which comprises a 

box of expanded polystyrene foam (Styrofoam), containing a permeable microwave absorber. 

This is filled with liquid nitrogen and placed on top of the radiometer, so it views emissions 

from the absorber through the base of the Styrofoam box, which has a low loss at microwave 

frequencies. The cryogen is assumed to be isothermal at the boiling point of nitrogen at 

atmospheric pressure, incremented a little to account for the hydrostatic pressure due to a 

Microwave 
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20 cm column of liquid nitrogen. This provides a black body at a known low temperature: 

77.55 K at 1013 hPa, but varying by ±0.2 K over the typical range of pressures experienced at 

Camborne. The target has been found to be sufficiently stable when used in a relatively dry 

atmosphere to delay the formation of condensation on the outside of the target and allow it to 

be used for periods of ~30 min. TND is adjusted after each liquid nitrogen calibration so as to 

force the brightness temperatures measured by the radiometer to match the expected values 

over this period. 

 

Each component of the liquid nitrogen calibration target was also analysed in detail by 

Hewison and Gaffard [2003] to calculate its contribution to the uncertainty in its brightness 

temperature by emission, absorption and scattering. These are summarised below. 

 

The dissimilar dielectric properties of liquid nitrogen and Styrofoam cause some of the 

radiation incident at the interface to be reflected. However, it is believed that liquid nitrogen 

gradually penetrates between the beads of polystyrene and breaks down the interface. This 

effect reduces the magnitude of this term by an unknown amount. The brightness 

temperature of the target has been observed to reduce by ~1 K during the first few minutes 

after filling [Hewison and McGrath, 2001]. It has been assumed that this term has a negligible 

contribution for low-density Styrofoam targets (1.75 lb/ft3). However, there remains a large 

uncertainty on this (~±0.8 K), which dominates that of the liquid nitrogen calibrations. For this 

reason, the same procedure should always be followed to ensure repeatable calibrations. 

 

Emission from the base of the Styrofoam box was found to increase with frequency from 

0.4 K at 22.235 GHz to 1.2 K at 58.8 GHz and has a large uncertainty of ±50%. The beads of 

polystyrene are estimated to be 2 mm diameter – i.e. D~λ – the regime in which volume 

scattering is most efficient. However, the low dielectric constant of polystyrene foam results in 

scattering producing a small but significant contribution to the total extinction. A 6 mm layer of 

high-density polyethylene foam (HDPE) is attached to the underside of the Styrofoam target 

to act as a thermal barrier to prevent the formation of condensation. This has very similar 

dielectric properties to Styrofoam and air, so no significant reflections are expected at these 

interfaces. The low loss tangent of HDPE foam means its emission is also negligible. 

 

3.4 Calibration Bias 
Each term in the radiometer system equations (3.2) and (3.3) is potentially subject to 

systematic errors, which can bias the observed brightness temperature and hence the profiles 

retrieved from them. In this section the known sources of bias are modelled and compared 

with the bias observed in a validation exercise, comparing radiometer measurements with 

forward-modelled radiosondes.  
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3.4.1 Modelled calibration bias 

A full review of all known mechanisms that can introduce bias in the calibration was 

conducted by Hewison and Gaffard [2003], including estimating the magnitude of each term 

and its uncertainty. Data from liquid nitrogen and tip curve calibrations were used together 

with theoretical modelling of the processes that can introduce biases. Table 3-2 shows the 

total bias introduced in observations at typical scene brightness temperatures for the current 

configuration of liquid nitrogen and tip curve calibrations. It also shows the uncertainty with 

which each bias is known. These uncertainties contribute directly to the overall error budget of 

the calibrated brightness temperatures.  

 

Table 3-2 Total bias introduced to typical scene brightness temperatures by all known 
mechanisms in Liquid Nitrogen and Tip Curve Calibrations and uncertainty. 

The mean bias found in comparison (§3.4.2) of observations with forward-modelled 
radiosondes is also shown for three absorption models: MPM89, MPM93 and Ros98. 

Standard deviation of the differences between observations and model is also shown. 

Frequency 
 
 

(GHz) 

Typical
 Tb (K) 

Total Bias  
on Typical Tb  

from LN2 calibration 
(K) 

      Bias      Uncertainty

Total Bias  
on Typical Tb from 

Tip Curve calibration 
(K) 

    Bias       Uncertainty

Mean Bias 

(Obs- 

MPM89) 

◊ (K) 

Mean Bias  

(Obs- 

MPM93)  

 x (K) 

Mean Bias 

(Obs- 

Ros98)  

+ (K) 

S.D.  

(Obs- 

MPM89) 

(K) 

22.235 27.5 1.12 + 0.80 0.76 + 0.52 1.81 0.72 1.92 1.30 

23.035 27.0 1.15 + 0.82 0.62 + 0.40 1.35 0.23 1.43 1.12 

23.835 24.0 1.22 + 0.84 0.60 + 0.40 1.44 0.36 1.48 0.94 

26.235 17.1 1.40 + 0.92 0.44 + 0.29 1.00 0.01 0.93 0.51 

30.000 15.0 1.54 + 1.01 0.31 + 0.21 0.78 -0.35 0.57 0.46 

51.250 105.5 0.80 + 1.06 0.26 + 0.35 0.57 0.91 0.18 0.66 

52.280 148.9 0.55 + 0.89 0.35 + 0.78 -1.08 -0.08 -1.39 0.42 

53.850 248.6 0.22 + 0.38 0.52 + 1.52 0.90 0.16 -0.08 0.33 

54.940 278.7 0.11 + 0.24 N / A 1.21 0.89 0.94 0.33 

56.660 283.4 0.09 + 0.22 N / A 1.36 1.29 1.31 0.64 

57.290 283.8 0.09 + 0.22 N / A 1.76 1.72 1.74 0.44 

58.800 284.1 0.10 + 0.22 N / A 1.18 1.22 1.24 0.37 

 

Table 3-2 shows that the tip curve introduces lower uncertainties than the liquid nitrogen 

calibration for the lowest frequencies. At the higher frequencies where the atmosphere is 

optically thick, liquid nitrogen is better, as the tip curve becomes unfeasible. Table 3-2 also 

includes the mean bias found between the observations and three different absorption models 

in the following section. 

3.4.2 Validation of observations/model 

As discussed in §2.7, radiometer observations can be used to validate radiative transfer 

models (RTMs) or vice-versa. This is illustrated here by comparing the brightness 

temperatures (Tbs) measured by the radiometer with those forward modelled from co-located 



 56

radiosondes in clear skies. This can highlight biases in the radiometer, radiosondes or RTM, 

which can affect retrievals and their validation. 

 

Hewison et al. [2003] analysed the first year of radiometer observations from Camborne. The 

zenith Tbs measured within 10 minutes of the launch of each radiosonde were compared to 

those modelled from the high-resolution radiosonde profiles using different absorption 

models. The following absorption models were used in this study: MPM87, MPM89, MPM93 

and Ros98, which are described in §2.2.5. This comparison was only performed in clear sky 

conditions, as radiosondes do not measure liquid water content, which would be necessary to 

model cloudy cases.  

 

 

Figure 3-4 Observed-Modelled zenith brightness temperatures. Each point is one 

radiosonde, modelled using MPM87(Δ), MPM89(◊), MPM93(x), Ros98(+).  

Solid lines show the linear regression through all point for each model (same colour). 

Based on 145 RS80H radiosondes with ≤1/8 low cloud, 22/2/02-3/2/03, Camborne, UK. 

 

Figure 3-4 shows the difference between observed and modelled brightness temperatures, 

plotted against the observed value. The comparison of the channels dominated by water 

vapour emission proved problematic, due to the higher variability of atmospheric humidity, 

which introduces a large scatter on the data. Despite this, the lowest frequency channels 
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show a strong slope, with all models showing a significant bias in humid conditions. The 

RS80H radiosondes used then at Camborne are known to have a dry bias due to sensor 

contamination and solar heating [Nash et al., 1995]. The mean maximum humidity measured 

in low cloud during this period was 97.0 %RH. When the vapour pressure in the profiles input 

to the RTMs was increasing by a factor of 1.03, the difference between observations and 

model decreased, but a positive bias remained for all models. MPM93 then remained the 

closest model to the observations, although it overestimates the strength of the water vapour 

continuum at 26-30 GHz. 

 

There was a consistent, positive bias of 1-2 K at the highest frequencies. This has been 

identified as an instrument bias, and has subsequently been reduced by modification of the 

control software. The channels at intermediate frequencies (30-52 GHz) show significant 

differences between the models, where MPM93 provides the best fit to the observations, 

although there is a large systematic uncertainty (~1 K) in the observations at 51.250 GHz 

mostly due to the calibration. There remains uncertainty in the accuracy of the absorption 

models at the edge of the oxygen absorption band near 51-53 GHz due to their sensitivity to 

the line coupling parameters [Boukabara et al., 2004]. 

 

3.5 Radiometric Noise  
Random noise on oxygen band channels is the single most important parameter of the 

radiometer in determining the accuracy of the temperature profile retrievals (§4.4.1). 

Atmospheric fluctuations also introduce random “noise”, which will be considered in §4.4.1.3, 

so although noise can be improved as a trade-off with integration time, the optimum result is 

not necessarily the same for each channel (§8.1). It is also useful to minimise the random 

noise on the observations in order to better evaluate biases. There is a contribution to the 

radiometer’s noise from every component of the receiver and antenna system. These were 

analysed by Hewison and Gaffard [2003] to allow optimisation of radiometer noise and are 

summarised here. 

3.5.1 Modelled radiometric noise 

The radiometric resolution, ΔTmin, is defined as the minimum difference in scene brightness 

temperature that is resolvable at the receiver’s output. This is equivalent to the standard 

deviation of the brightness temperatures measured by the radiometer while viewing a 

thermally stable scene, excluding contributions from noise on the calibration coefficients. The 

radiometric resolution depends on the system noise temperature, TSYS, the pre-detection 

bandwidth, B, and the integration time, τ, and gain stability, according to equation (3.5) [Ulaby 

et al., 1981]: 
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where  ΔG is the change in gain between observations not accounted for by the calibrations. 

 

However, ΔTmin does not include noise on the calibration coefficients that affect the final Tbs. 

This can be evaluated by differentiation of the system equations (3.2) and (3.3) to yield: 
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where  εTBB is the uncertainty in the temperature of the black body, TBB, 

εTND is the uncertainty in brightness temperature attributed to the noise diode, TND, 

εTb is the uncertainty on the scene brightness temperature, Tb. 

 

Note that εTb derived from equation (3.6) contains ΔTmin terms multiplied by √2. This is due to 

the implementation of the system equations (3.2) and (3.3), which are applied independently 

to each observation cycle, differencing the views of the sky and the black body to account for 

the radiometer’s offset. The overall noise on brightness temperatures, εTb, could be reduced 

substantially (by as much as a factor of √2) if the gain and offset could be averaged over a 

number of observation cycles. This is only possible if the radiometer is calibrated more 

frequently than the typical timescale for their variation. 

 

The most difficult term to quantify is εTND because of the large noise on estimates of TND 

provided by tip curve calibrations and the irregularity and variability due to changes in the 

design of the liquid nitrogen target. Hewison and Gaffard [2003] analysed a series of tip curve 

calibrations in clear skies to fit a non-stationary model of the evolution of TND to estimate εTND 

as a function of the typical time between calibrations. Table 3-3 shows this term dominates 

the noise on the brightness temperatures when applying liquid nitrogen calibrations to the 

water vapour channels, which typically have low Tbs and need to extrapolate the calibration 

points furthest. However, there is a large uncertainty on this term. 

 

Table 3-3 shows the contributions to the total uncertainty on typical zenith brightness 

temperatures due to each term affecting calibrations using liquid nitrogen and tip curves. 

These should be compared to the radiometric noise, shown in Table 3-4. It shows that to 

minimise the random noise on Tb, the tip curve should be used for the low frequency channels 

that see lower Tbs, while liquid nitrogen calibrations should be used for channels above 

~50 GHz. The optimum interval between these calibrations can also be determined from an 

extension of this analysis. It is clear that the average interval of 16 hr between tip curves does 

not cause noise diode drifts to dominate the calibration noise, while it does for average 

interval of 3 months since the most recent liquid nitrogen calibration. 



 59

Table 3-3 Analysis of Contributions to Noise on Typical Zenith Brightness 
Temperatures from Liquid Nitrogen and Tip Curve Calibrations 

Black 
Body 
Noise 

(K)

LN2 
Noise 

(K)

Tnd 
Drift (K)

Radio-
meter 
Noise 

(K)

Total  
(K)

Black 
Body 
Noise 

(K)

Atmos. 
Noise 

(K)

Noise 
Diode 
Noise 

(K)

Tnd 
Drift (K)

Radio-
meter 
Noise 

(K)

Tmr 
Noise 

(K)

Total  
(K)

22.235 0.06 0.09 1.07 0.25 1.10 0.06 0.24 0.16 0.13 0.09 0.26 0.47
23.035 0.06 0.09 0.63 0.06 0.64 0.06 0.24 0.13 0.11 0.06 0.25 0.45
23.835 0.06 0.09 0.67 0.05 0.67 0.06 0.22 0.12 0.10 0.05 0.22 0.40
26.235 0.06 0.17 1.10 0.07 1.11 0.06 0.19 0.08 0.12 0.07 0.15 0.31
30.000 0.06 0.16 0.61 0.11 0.64 0.06 0.19 0.09 0.13 0.11 0.12 0.31
51.250 0.06 0.08 0.56 0.08 0.57 0.06 0.17 0.12 0.08 0.08 1.09 1.55
52.280 0.06 0.07 0.44 0.09 0.45 0.06 0.16 0.11 0.06 0.09 1.55 2.20
53.850 0.06 0.02 0.14 0.06 0.16 0.06 0.10 0.10 0.02 0.06 2.62 3.70
54.940 0.06 0.01 0.05 0.14 0.15 0.06 0.10 0.12 0.01 0.14 2.81 3.98
56.660 0.06 0.01 0.04 0.02 0.05 0.06 0.19 0.09 0.01 0.02 2.88 4.08
57.290 0.06 0.01 0.04 0.01 0.04 0.06 0.21 0.08 0.01 0.01 2.90 4.10
58.800 0.06 0.01 0.04 0.00 0.04 0.06 0.12 0.10 0.01 0.00 2.90 4.10

Contribution to uncertainty on Tz                         
using Tip Curve Calibrations

Contribution to uncertainty on Tz           
using LN2 Calibration

Freq. 
(GHz)

 

3.5.2 Measured radiometric noise 

It is also possible to evaluate the radiometric resolution of the whole system, including any 

noise introduced by the calibration process, εTb. This can be estimated as the standard 

deviation of the brightness temperature measured while viewing a stable reference scene, as 

shown in Table 3-4 for views of the ambient black body reference target and a liquid nitrogen 

target over the same 30 min period. All the channels have noise levels between 0.1-0.2 K, 

except for the 57.29 GHz channel, which is consistently noisier. There was no statistically 

significant difference between the variance measured with the two scenes, which shows that 

noise diode fluctuations do not contribute significantly to the radiometer noise on short 

timescales (<~1 hr). 

 

Table 3-4 Mean and Uncertainty of Standard Deviations of Brightness Temperatures 
measured viewing Ambient (Amb) and Liquid Nitrogen (LN2) reference scenes 

Frequency 
(GHz) 22.235 23.035 23.835 26.235 30.000 51.250 52.280 53.850 54.940 56.660 57.290 58.800

LN2 S.D. 0.17 0.12 0.11 0.13 0.21 0.18 0.15 0.17 0.17 0.18 0.55 0.17 

± 0.03 0.02 0.02 0.03 0.04 0.04 0.03 0.03 0.03 0.04 0.11 0.03 

Amb S.D. 0.18 0.18 0.10 0.13 0.20 0.22 0.17 0.13 0.21 0.18 0.55 0.16 

± 0.04 0.03 0.02 0.03 0.04 0.04 0.03 0.02 0.04 0.03 0.11 0.03 

Ave S.D. 0.18 0.15 0.11 0.13 0.20 0.20 0.16 0.15 0.19 0.18 0.55 0.17 

+ 0.02 0.02 0.01 0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.08 0.02 
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3.5.3 Radiometric noise covariance 

The radiometric noise is an important contribution to the Observation Error Covariance Matrix 

(§4.4.1), which is needed in variational assimilation of its data. It can be estimated from the 

same time-series of calibrated brightness temperatures. The variance-covariance matrix, E is 

a symmetric (n x n) matrix, for which the diagonal elements are the sample variances of n 

variables, and the other elements are the covariances among the variables [Wilks, 1995], 

defined by: 

 1( 1)k − ′ ′= − TE y y  (3.7) 

where  y′ is the (k x n) matrix of brightness temperature anomalies from the mean of  

k observations in n channels, and T is the matrix transpose operator. 

 

The radiometric noise covariance matrix, E, was estimated while viewing a liquid nitrogen 

target over 30 min. It is plotted as an image in Figure 3-5, with each element represented as a 

square, shaded according to the colour scale. This includes 15 channels – the 12 channels of 

the microwave radiometer, followed by its ambient temperature and humidity sensors 

(converted to lnq – see §4.2.2) and the infrared brightness temperature. Figure 3-5 shows E 

is an approximately diagonal matrix, for which the diagonal terms are given in Table 3-4.  

 

 

Figure 3-5 Covariance (left) matrix of radiometric noise estimated viewing LN2 target. 
Correlation (right) Matrix calculated from same data set, showing uncorrelated noise. 

First 12 channels are Radiometrics TP/WVP-3000 brightness temperatures [K2].  
Last 3 channels are ambient temperature [K2], total water [lnq2] and IR Tb [K2]. 

3.5.4 Effect of calibration drift 

It is possible to demonstrate the effect of calibration drift by comparing periods of data 

collected by the radiometer with and without regular calibration against views of the ambient 

reference target. This can be achieved by calculating the Time Structure Function (TSF) 

[Kitchen, 1989], defined here as the r.m.s. difference (divided by √2) between brightness 

temperatures re-sampled over different intervals, τ,  from an extended time-series, y(t): 
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 ( ) ( ) ( )
1/ 221

2
TSF t tτ τ⎡ ⎤= + −⎣ ⎦y y  (3.8) 

 

This is closely related to the Allan Variance [Allan, 1966]. It allows the variability of stochastic 

processes to be quantified over specific timescales and can be used to analyse the stability of 

microwave radiometers [Vasić et al., 2005].  

 

TSFs have been evaluated for two data sets of 58.8 GHz observations in Figure 3-6, each 

covering 1106-1306 UTC over 11 day periods in Summer 2005, during CSIP. The TSF starts 

to increase after 100 s without viewing the ambient black body target, due to calibration drift. 

Similar results were obtained using the 56.66 and 54.94 GHz channels. Therefore, it is 

recommended that the observation cycle includes calibrations against the internal black body 

at least every 60 s. 

 

It is also recommended that the calibration coefficients are averaged over several minutes to 

reduce their impact on the noise of the calibrated brightness temperatures. In the current 

configuration, this accounts for half the variance observed in Tb. Exploiting the calibration 

immediately following the observation would also improve its representativeness, effectively 

halving the time available for the radiometer’s calibration to drift. 

 

Figure 3-6 Time structure functions of 58.8 GHz Tb over 1106-1306 UTC during CSIP:  
21/7 – 31/7/05 with calibration against ambient black body every 30 s (black),  

26/6 – 7/7/05 without calibration, but sampled every 12s (red) [multiplied by √2]. 

Horizontal  line indicates white noise level on calibrated brightness temperatures. 

 

On periods longer than 1000 s, the TSF starts to increase as atmospheric variability starts to 

dominate over radiometric noise. It is recommended that the brightness temperatures are not 

averaged for longer than this period before retrieving the profile. This break point occurs at 

much shorter time scales for lower frequency channels, which are sensitive to humidity and 
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cloud. Even by 54.94 GHz, this break point occurs ~300 s. At lower frequencies, the 

observations are not noise limited even on the shortest timescales, so the above technique 

cannot be used to measure the calibration drift. This is discussed in more detail in §4.4.1.3. 

3.6 Radio Frequency Interference (RFI) 
Interference poses a serious risk to the viability of future operations of microwave 

radiometers. Passive microwave radiometers are designed to detect thermal signal levels and 

can be extremely sensitive to transmissions within their channels’ passbands (or even from 

adjacent bands if inadequately filtered). Interference can also can be picked up in other parts 

of the radiometer, if inadequately screened – particularly in the intermediate frequencies (IF). 

Although no RFI was experienced during the trials of the Radiometrics TP/WVP-3000, and its 

electromagnetic compatibility with other systems required for future integrated profiling 

systems has been demonstrated, it is likely to become more problematic in future.  

 

As the number of microwave radiometers in a network increases so does the risk of 

compromising the quality of their observations due to interference, as it will be more difficult to 

site them at “quiet” locations. It will also become more difficult to monitor applications from 

other users of the electromagnetic spectrum to establish nearby transmitters in, or adjacent 

to, the passbands of the radiometers. There is also increased commercial pressure on the 

electromagnetic spectrum from mobile communications, fixed data links, automotive collision 

avoidance radars, and low power, spread-spectrum applications, such as WiFi.  

 

The conflicting demands on the spectrum are managed by national and international 

regulation. Several of the channels used by microwave radiometers are in narrow bands 

designated as exclusively for passive applications (23⋅60-24⋅00 GHz, 52.6-55.78 GHz) 

[Ofcom, 2004]. However, others are in shared allocation (22.21-23.0 GHz, 55.78-59.3 GHz), 

or completely unprotected bands (e.g. 23.0-31.3 GHz, 50.4-52.6 GHz). Although the centre of 

the 60 GHz oxygen band is shared, strong atmospheric absorption here provides a good level 

of protection. It is recommended that, in future, the channels currently operating at 30.0 GHz 

and 51.25 GHz are moved to adjacent protected passive bands at 31.3-31.5 GHz and 50.2-

50.4 GHz, respectively. Neither of these channels has great sensitivity to the vertical 

distribution of water vapour or oxygen, so this change should not significantly alter the 

performance of the radiometer or retrievals derived from its data. However, it would still be 

necessary to account for this change in the radiative transfer modelling. 

3.6.1 Interference Mitigation 

There are a range of techniques that have been applied in passive radiometry to mitigate 

against interference. Many of these rely on identifying anomalous differences between signals 

in channels or views with similar characteristics to detect the typical narrow range of the 

interfering signal’s spectrum, directivity or polarisation. For example, the passband of each 
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channel can be divided into discrete sub-bands, each of which is detected independently. If 

the radiances measured in all sub-bands pass a test of statistical consistency, they can be co-

averaged and processed as normal; if not, that measurement is flagged as suspect 

interference. A similar technique can be applied to radiances measured at close separation of 

elevation or azimuth angles, which has the advantage of not requiring any additional 

hardware. The fact that thermal emissions are not expected to be polarised can also be 

exploited to detect anthropogenic emissions, which are typically linearly, or circularly 

polarised. However, again, this requires increased hardware complexity by having either a 

quasi-optic, a waveguide polarisation switch or multiple antennae. 

 

The recent development of agile digital detectors for microwave radiometers allows very rapid 

sampling of the signal, which in turn allows the calculation of higher order moments of the 

signal’s probability density function than have traditionally been used. The kurtosis of the 

signal is the ratio of its 4th:2nd moments. Higher kurtosis means more of the variance is due to 

infrequent extreme deviations, as opposed to frequent modestly-sized deviations, and is a 

very sensitive indicator of RFI compared to natural, thermal emissions. Misra et al. [2006] 

described a 7.4 GHz radiometer system that combines this with digital sub-band filtering to 

calculate the first 4 moments. Although this technique requires complex hardware and 

computation, and has only been applied at relative low microwave frequencies, it offers much 

promise for the future. 

 

It is recommended that in addition to implementing one or more of these techniques to 

mitigate against RFI in the radiometer’s design, mechanisms are put in place to monitor 

licence applications and feedback any observations of instances of RFI to the regulatory 

authority to allow them to enforce the limited protection provided to passive applications. If the 

radiometer is capable of scanning frequency and elevation and/or azimuth angles, full scans 

should be occasionally scheduled in the observing sequence, specifically to look for new RFI 

sources. 

3.7 Future hardware developments 
During the past decade the price of a microwave profiler has reduced by a factor of 2. At the 

same time, technological developments, such as direct detection or better switching, have 

improved their accuracy and stability. Yet, at ~£100k they are still too expensive to deploy in a 

dense observing network. 

 

Recent developments in Monolithic Microwave Integrated Circuit (MMIC) technology have 

allowed the integration of key components of a water vapour profiling radiometer into a single 

package at unit component costs of 32 k€ [Iturbide-Sanchez et al., 2004]. This includes a 

local oscillator, mixer, power splitter, amplifiers, channel definition filters, detectors and pin 

diode switches to reference the scene to noise diodes and chip terminations, but not the 
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antenna. The advantages of MMIC technology is that it allows mass production of identical, 

compact and now low-noise systems. The component costs of additional radiometers would 

be ~9 k€ each. This MMIC technology is available now at frequencies up to 30 GHz, and is 

expected to be extended to 60 GHz by 2009 [S. Reising, personal communication, 2006]. 

This opens up the potential for mass production of radiometer receivers suitable for 

temperature as well as humidity profiling.  

 

If these receivers could be integrated into simplified radiometers to keep their production 

costs low, they could be deployed in dense national networks of dozens, or hundreds across 

Europe. This requires a substantial investment by the manufacturers, but also in the 

assimilation of their data. It is, therefore, recommended that these developments are closely 

monitoring by continuing liaison with the manufacturers, and that instruments based on this 

new technology are tested for operational suitability.  

3.7.1 Simplifying the radiometer for weather station integration 
If dense networks of microwave radiometers are to be considered, they may be integrated as 

standard instruments in weather stations. In this case, the radiometer surface pressure, 

temperature and humidity sensors would obviously be redundant and could be omitted. A 

number of other measures are suggested below to simplify the radiometer package further 

and improve affordability, which warrant further investigation. 

 

The scan mechanism could be removed. This would reduce the size, weight and power 

requirements considerably. It would also remove the need to couple multiple frequency bands 

onto the same optical axis. However, it would not allow elevation scanning, tip curve 

calibration or routine calibration against an ambient black body reference. In this case, the 

radiometer would need to be sufficiently stable for its drift to be reliably calibrated by 

monitoring the observations-minus-background as part of the cycle of assimilating its data into 

an NWP model. For this technique alone to provide sufficiently accurate calibration may 

require the radiometer to be stable enough so it does not drift significantly over the course of 

~1 month. This may be feasible, given current performance levels with two internal 

references, if the radiometer can be thermally isolated from the environment – for example in 

a thick insulating enclosure. However, it may also be possible to use data from a co-located 

GPS sensor in clear conditions as an absolute calibration reference for the channels in the 

water vapour band, as both are sensitive to the integrated water vapour. (§4.9.6, §7.1.4) 

 

The feedhorn antennae could be replaced by a more compact design, such as a waveguide 

array antenna [Iturbide-Sanchez et al., 2004]. 

 

The blower mechanism could be removed to save costs and power requirements and improve 

reliability by reducing the number of moving parts. This would be more attractive for 
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radiometers with a fixed view away from zenith, so they could be built into an enclosure, 

which acts as a rain shelter. In this case, the microwave window could also be inclined to 

encourage rain to run-off, whilst still including a hydrophobic coating. A simple rain sensor 

adjacent to the microwave window could provide a useful quality flag to indicate when the 

radiometer’s calibration is likely to be compromised by liquid water.  

 

3.8 Summary of Radiometer Hardware 
The performance of the Radiometrics TP/WVP-3000 has been analysed in terms of 

calibration bias and radiometric noise. Although similar microwave radiometers are available 

commercially, data collected with this instrument during a series of trials and experiments 

conducted during this study was used in this analysis. This radiometer is capable to scanning 

a range of elevation angles. However, it was shown that observations at low elevation angles 

are susceptible to errors due to misalignment, which may be reduced by averaging symmetric 

views and improved by better mirror control. Low frequency channels were also found to be 

sensitive to emission from the surface, which limits their application at low elevation angles. 

 

The Radiometrics TP/WVP-3000 includes reference noise diodes and an internal ambient 

black body calibration target, which are viewed frequently to calibrate the receiver’s gain and 

drift. Referencing the radiometer’s signal to these adds noise to its calibrated brightness 

temperatures, which could be reduced by averaging them over a period of a few minutes. 

However, the noise diodes do not provide an absolute reference, and their brightness 

temperatures must be calibrated against an external reference scene occasionally to provide 

an absolute reference and account for their long-term drift. The low frequency channels, 

where the atmosphere is optically thin, can be calibrated by the tip curve method, which relies 

on the assumption that the opacity increases linearly with path length through the atmosphere 

for different elevation angles. At higher frequencies, the atmosphere becomes optically thick 

and the absolute calibration is provided by viewing a cryogenic reference target for a short 

period. Fortunately, the noise diodes were found to be very stable and only need calibration 

every few months. The radiometer’s noise levels was assessed during calibrations against a 

cryogenic reference target. Its calibration accuracy was assessed by comparison with forward 

modelled radiosondes in clear sky, which identified biases in the instrument’s calibrations, 

radiosondes’ humidity and absorption models. These results and analysis in later chapters led 

to a recommended observing sequence for this instrument (§7.1.6). 

 

It is recommended that future developments in MMIC technology are monitored as this may 

allow the mass production of microwave radiometers operating at frequencies up to 60 GHz, 

which may be suitable for temperature profiling. Also, techniques to mitigate Radio Frequency 

Interference (RFI) should be implemented to reduce the risk of this jeopardising the future 

viability of microwave radiometry at these frequencies.  
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Chapter 4 Variational Retrievals (1D-VAR) 
The fundamental retrieval problem can be stated mathematically as a transformation from an 

observation vector, y, which includes all the channels of an observing system, to a state 

vector, x, which describes the vertical profile of temperature, humidity and cloud. A forward 

model is a function, H, which transforms state space into observation space, y = H(x), based 

on the radiative transfer model described in Chapter 2. The inverse problem involves mapping 

observations into state space, which requires a statistical approach as described in this 

chapter. 

 

However, in this case, the dimension of state space is much larger than that of the 

observations, so the retrievals are ambiguous – there are an infinite number of profiles that 

match a given set of observations. This is known as an ill posed problem, which can only be 

solved by the application of a priori constraints. This problem is further complicated by noise 

on the observations. This chapter describes the development of a variational retrieval method, 

which takes its a priori  background data from NWP and combines it optimally with the 

observations in a way that is statistically consistent with the errors of each. This process is 

illustrated in Figure 4-1 and explained in detail in this chapter. 

 

Figure 4-1 Schematic of inverse problem of retrieving profiles from observations. 
Right hand panel indicates set of brightness temperature observations with error bars 

corresponding to observation vector, y, and its error covariance, R. 
Left hand panel shows profile of retrieved temperature and dew point with error bars, 

corresponding to state vector, xa and its error covariance, A. 
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4.1 Theory 
Bayes’ Theorem allows us to know how the probability distribution of a measurement, y, 

maps into state space, x and combines with prior knowledge: 

 ( ) ( ) ( )
( )

|
|

P P
P

P
=

y x x
x y

y
 (4.1) 

where P(x) and P(y) are the probability density functions (pdf) in state and observation space 

respectively, P(y|x) is the pdf of y given x and P(x|y) is the pdf of x given y. 

 

We seek the best estimate of x, knowing a priori its background value, xb (e.g. given by an 

NWP model), and the coincident observation vector, yo. When the errors in the observations 

and the errors in the background have Gaussian distributions and are uncorrelated, then the 

logarithm of the conditional pdf of x given yo is given the cost function [Rodgers, 2000]: 

 ( ) ( )1 1
32ln ( | )

T T
P H H c− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − − + − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

o b b o ox y x x B x x y x R y x  (4.2) 

where B and R are the error covariance matrices of the background, xb, and observations, yo, 

respectively (described in sections 4.4.1 and 4.3.2), H(x) is the forward model operator, used 

to translate state space into observation space, and c3 is a constant. This uses the standard 

notation of Ide et al. [1997]. 

 

Bayesian methods do not provide an exact answer to the inversion of observations into state 

space, but a posterior pdf from which the expected value or most probable state can be 

derived, together with an estimate of its uncertainty. For example, the maximum a posteriori 

probability can be found by maximising the conditional pdf, which is equivalent to minimising 

the cost function given by (4.2). Because H(x) is nonlinear, this minimisation needs to be 

performed iteratively, as described in §4.7.  

 

Because this minimisation uses the derivative of H(x), it is referred to as a variational 

retrieval, which is a special case of optimal estimation [Eyre, 1990]. This refers to the fact that 

the observations and background are combined in an optimal way, accounting for the error 

characteristics of both. This is an example of a physical statistical retrieval method, as it relies 

on a physical, rather than empirical, model to relate the state and observation space. 

 

This chapter reviews the requirements for One-Dimensional Variational (1D-VAR) retrieval of 

temperature and humidity profiles from radiometer data. This follows a similar approach to the 

recently Integrated Profiling Technique (IPT) recently published by Löhnert et al. [2004]. 

However, while the IPT concentrated on the retrieval of cloud properties and takes its prior 

data from nearby radiosonde profiles, these 1D-VAR retrievals use short-range forecasts from 

NWP models as backgrounds and concentrate on temperature and humidity profiling. 

Different configurations are discussed and experiments conducted to evaluate their benefits. 
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4.2 Defining State Space 
When defining the retrieval problem we have a choice of the definition of state space – both 

the control variables for temperature and humidity and the vertical grid.  

4.2.1 Choice of state space – level heights and range 
It is convenient to use levels of the mesoscale model (§1.1.1) as this provides the background 

for the retrievals and its levels are concentrated near surface, where the radiometer has the 

highest resolution (§4.6). In §2.6.3 it was shown that discretising the true profile at these 

levels produces a small, but significant quantisation error. 

4.2.2 Choice of control variables 

As the radiative transfer calculations are performed using thermodynamic temperature, this 

seems a natural choice for the control variable. However, this should be converted to a 

conservative quantity, like potential temperature, when calculating layer averages to ensure 

they are not biased. 

 

In this study, the humidity components of the state vector are defined as the natural logarithm 

of total water, lnqt, where qt is the total of the specific humidity and liquid water content. This 

control variable was first proposed by Deblonde and English [2003] for assimilation of cloud 

information from microwave satellite data. They used a simple linear partition function, where 

water in excess of RH1=0.95 is portioned by a fraction, Csplit=0.50 between vapour and liquid, 

according to (4.3). Water in excess of RH2=1.05 all appears in condensed form. 
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where t
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q
RH

q
=  (4.4) 

and L tq q q= −  (4.5) 

 

This partition function gives a discontinuity in the derivative at RH1, which may produce 

unstable iterations in the retrieval when the retrieved humidity is close to this threshold. A 

modified version of this partition function has been developed to produce a smooth transfer 

function between water vapour for qt/qsat < 90% and liquid water for qt/qsat >110% (where qsat 

is the specific humidity at saturation), following (4.6): 
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where RH1=90% and RH2=110% were selected to approximate the partition function from 

Deblonde and English [2003].  

 

 

Figure 4-2 Total Water partition functions by Deblonde and English (dashed)  
and this study (solid) for a range of qt =(0 – 1.2)qsat.  

Upper panel shows specific humidity, q (black) and liquid water mixing ratio, qL (blue).  
Middle panel shows derivatives dq/dqt (black) and dqL/dqt (blue).  

Lower panel shows 30 GHz absorption modelled by Rosenkranz'98 and Liebe (cloud). 

 

Figure 4-2 illustrates how total water, qt, is partitioned between vapour and condensate 

according to RHqt. The upper panel shows how specific humidity (black line) increases linearly 

with RHqt until RHqt=90%. At higher values of RHqt increments in qt result in the addition of 

liquid water (blue line). The middle panel of Figure 4-2 shows that the derivatives dq/dqt 

(black) and dqL/dqt (blue) for the proposed function (solid lines) are continuous, in contrast to 

those in Deblonde and English [2003] (dashed lines). The lower panel shows the absorption 

increases steadily with qt in clear air, but much more rapidly as the air becomes saturated. 
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Although sinusoids are used here in this partition function, it would also be possible to use a 

hyperbolic tangent, which also follows a smooth transition and has the desirable property of 

being continuously differentiable. 

 

The choice of total water has the advantage of reducing the dimension of the state vector, 

enforcing correlation between humidity and liquid water and an implicit super-saturation 

constraint because of the stronger absorption of liquid water than vapour. The use of the 

logarithm creates error characteristics that are more closely Gaussian and prevents 

unphysical retrieval of negative humidity. 

 

Initially the microwave forward model further partitioned condensed water between liquid and 

solid fractions using the function proposed by Jones [1995]. However, this was intended for 

application to mixed phase clouds and allows very little liquid (~20%) to form, even at 

temperatures just below 0°C, which does not apply to more general situations. It has been 

replaced by the simpler parametrization in (4.7), based on a fraction of liquid water increasing 

linearly with temperature from 0% at -40°C to 100% at 0°C, similar to that proposed by Wu 

and Weinman [1984]: 
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where fl is the fraction of condensed water forming as liquid and T is its temperature (°C).  

 

The remainder forms as ice and is effectively lost from the retrieval, as it is assumed to have 

negligible extinction at the frequencies of this study. This partitioning scheme inhibits the 

formation of liquid water at very low temperatures, although this was not found to have a 

strong impact on the retrievals. However, this portioning is not applied in the infrared forward 

model, which treats ice and liquid in the same way, as ice cloud has a strong influence on Tir, 

unlike at microwave frequencies. 

 

4.3 Background 
Additional information is needed to resolve the ambiguity introduced into the retrieval due to 

the under-constrained nature of the problem. For the variational retrievals, this background 

information is provided by a priori knowledge of the atmospheric state in the form of a short-

range forecast from an NWP model. Although NWP model analyses are available for 

retrievals conducted retrospectively, they would not be available for real-time operational 

systems, (and may contain information from radiosondes, which are used in the validation of 

the retrievals). Our observations must improve on this background if they are to have any 

impact on the forecast model. 
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4.3.1 Mesoscale Model 

The mesoscale version of the Met Office Unified Model (§1.1.1) is used to provide 

background data for the retrievals in the form of profiles of temperature, humidity and liquid 

water. The model grid points (12 km apart) are interpolated to the position of the 

observations. This model is initiated every six hours, including data from radiosonde stations. 

A short-range forecast (T+3 to T+9 hr) valid at the hour nearest the observations is used for 

the background, as would be available to operational assimilation schemes. This is 

independent of any radiosondes launched at observation time, which may be used to validate 

the retrievals.  

 

The background was found to have a consistent bias with respect to co-located radiosondes 

used in this study, particularly during TUC in Payerne (Switzerland). This is believed to be 

due to the mesoscale model’s limited representation of the orography. This bias was 

corrected empirically prior to using the background in the retrieval by subtracting the average 

difference between the model and radiosonde profiles. 

4.3.2 Background Error Covariance Matrix 

The background error covariance, B, describes the expected variance at each level between 

the forecast and true state vector and the correlations between them. A good specification of 

background error covariances is an essential part of any state-of-the-art data assimilation 

system [Ingleby, 2001]. As will be shown, the specification of B can be somewhat empirical, 

yet it has critical implications for the retrievals and their information content. For this reason it 

is important to validate the choice of B, as will be shown in §4.6.3. Kadygrov and Pick [1998] 

estimated B based on a diagonal matrix, with correlation between levels at different heights 

defined by a simple Gaussian function. In this study, B was initially taken from that used to 

assimilate data from satellite instruments operationally at the Met Office, but it has also been 

evaluated by another method in the following subsections. 

4.3.2.1 B used for 1D-VAR of ATOVS data 

Initially, the version of B used for 1D-VAR assimilation of ATOVS data in the northern 

hemisphere into the global version of the Unified Model was investigated, referred to here as 

BATOVS. Its temperature components are defined on 43 RTTOV (pressure) levels, while the 

humidity is defined in terms on lnq on the lowest 26 levels, but contains no correlation 

between temperature and humidity. The temperature and humidity sub-matrices were re-

mapped onto the UMG3 vertical grid independently by interpolating their eigenvectors 

following the approach described in Collard [1998]. It is expected that the variances and 

correlations of B would be a little smaller for the mesoscale version of the UM, because of its 

improved ability to represent small-scale features. 
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Figure 4-3 B matrices used in assimilation of ATOVS satellite data in the northern 
hemisphere by Met Office 1D-VAR, interpolated to lowest 28 UMG3 levels (left) and 
calculated by NMC method using T+6 – T+12 mesoscale model forecast profiles for 
Larkhill over 1 year (right). The state vector comprises temperature [K] at 28 levels, 

followed by total water (lnqt) [dimensionless] at the same 28 levels. 

4.3.2.2 The NMC method 

B has also been estimated using the NMC method, first described by Parrish and Derber 

[1992] (then at the National Meteorological Center, USA), which uses the covariance of the 

differences in state vector from sequential runs of an NWP model valid at the same forecast 

time to estimate B. This assumes that the statistical structure of forecast errors varies little 

over the period. Under this assumption, the spatial correlations of background error should be 

similar to the correlations of differences between two forecasts verifying at the same time. 

The advantage of the method is that it is straightforward to calculate the required statistics. 

The disadvantage is that the underlying assumption that the statistical structure of 48 hr - 

24 hr forecast differences are similar to that of background error is difficult to justify. 

 

The NMC method was applied to estimate B as the covariance of the difference between 

state vectors from one year of successive T+6 and T+12 hr mesoscale model forecasts for 

Larkhill. This site was chosen as representative of inland UK locations, which have larger 

diurnal variations than coastal areas. The resulting covariance matrix was scaled as 

described in §4.6.3 to give BNMC, for which the magnitude was consistent with the observed 

Observation minus Background (O-B) statistics.  

 

Figure 4-3 shows BNMC is approximately diagonal, but with significant correlation between 

adjacent levels, especially near the surface. The terms of √diag(BNMC) are also shown in 

Figure 4-11, which are ~1.0 K for temperature components at all levels, similar in magnitude 

to BATOVS, but with a different correlation structure. The diagonal terms of the total water 

a) BATOVS b) BNMC 
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components of √diag(BNMC) increase from 0.25 near the surface to 1.00 by 3.5 km. (An error 

of 0.1 in lnq is equivalent to a 10% error in specific humidity.) There is also significant 

correlation between temperature and humidity components, which is often neglected. 

Combined with the some channels’ sensitivity to both temperature and humidity, this reduces 

the independence of these variables in the retrievals.  

 

Other inland sites gave similar statistics. Histograms of the difference between T+6 and T+12 

hr forecasts were examined and found to be approximately Gaussian, with few outliers. 

Approximately 1% of cases lie outside the 3-sigma limit for both temperature and humidity 

(although the surface temperature and stratospheric humidity have more outliers). This is, 

however, higher than would be expected from a purely Gaussian distribution (0.27%). 

 

4.4 Observation Vector 
In this study the observation vector, y, initially comprises the zenith brightness temperatures 

in the 12 channels of the Radiometrics TP/WVP-3000 microwave radiometer, Tb1, Tb2, … Tb12, 

the ambient air temperature, TAMB, and humidity, lnqAMB, both measured at ~1.2 m. This vector 

is later suffixed with the brightness temperature from the infrared radiometer, Tir : 

 1 2 12, ,... , ,ln ,b b b AMB AMB irT T T T q T= ⎡ ⎤⎣ ⎦y  (4.8) 

4.4.1 Observation Error Covariance 

The observation error covariance, R, has contributions from the radiometric noise (E), forward 

model (F) and representativeness (M) errors:  

 = + +R E F M  (4.9) 

4.4.1.1 Radiometric Noise 

The radiometric noise, E, of the microwave radiometer was evaluated in detail in §3.5.3 as the 

covariance of the Tbs measured while viewing a stable scene over a short period. As shown in 

Figure 3-5, this term is approximately diagonal – with diagonal terms ~(0.1-0.2 K)2 – i.e. the 

channels are independent.  

4.4.1.2 Forward Model Error 

The forward model errors include random errors introduced in the spectroscopy, any fast 

model parametrizations and the profile representation in the radiative transfer model, which 

were evaluated in §2.2.7, §2.5.2, §2.5.3 and §2.6.3, respectively. The contributions of these 

terms to the overall forward model error covariance are shown in Figure 4-4, which clearly 

shows it is dominated by the uncertainties in the spectroscopy, which are the most difficult to 

estimate accurately. However, as noted in §2.2.7, this term may be over-estimated. 
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Figure 4-4 Contributions to Forward Model error covariance due to  
a) spectroscopic errors, b) monochromatic frequency approximation,  

c) Fast Absorption Predictor and d) profile discretisation. 
First 12 channels are Radiometrics TP/WVP-3000 brightness temperatures [K2].  
Last 3 channels are ambient temperature [K2], total water [lnqt

2] and IR Tb [K2]. 

4.4.1.3 Representativeness Error 

“In objective analysis the desired resolution determines a scale, which may be described by 

saying a grid-point value represents an average in space and time. It is usual to define the 

analysis and background errors as deviations from the truth also truncated to this scale. Thus 

it is possible to conceive a ‘perfect’ analysis or background, even though they do no represent 

all atmospheric scales. To compensate for this it is usual to add errors of representativeness 

to the instrumental errors to get a larger observational error. It is important to realize that 

these errors are as much a function of background representativeness as the observational 

representativeness; they can be considered explicitly as the errors in the generalized 

interpolation from background to observations.” [Lorenc, 1986] 

 

a) Spectroscopy 

c) Fast Absorption Predictor d) Profile Discretisation 

b) Monochromatic Frequency 

d) Profile Discretisation c) Fast Absorption Predictor 
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The representativeness error, M, allows for the radiometer’s sensitivity to fluctuations on 

smaller scales than can be represented by the NWP model. M has been estimated here by 

studying the fluctuations in the radiometer’s signal on typical time scales taken for 

atmospheric changes to advect across the horizontal resolution of the NWP model. While it 

would have been better to estimate M from coincident time series of observations from 

identical systems separated by an appropriate distance, this was not possible. 

 

The representativeness error has been estimated from a time-series of observations during a 

rare 6 day period without rain at Camborne (23-29 July 2004) when the radiometer was 

sampling the zenith view once a minute. The first day of this period was free of cloud; the next 

2 days had variable amounts of low cumulus cloud. This was followed by 2 overcast days and 

1 more day of variable cloud. Although the variability during this period may be smaller than 

average due to the anti-cyclonic conditions that pervaded, it is difficult to identify a longer rain-

free period of data for analysis. The extinction by rain drops tends to produce highly erratic 

time-series of Tb, which dominate the time structure function and make retrievals unreliable, 

for the reasons discussed in §2.4. Figure 4-5 shows the time-series of microwave and infrared 

brightness temperatures, ambient temperature and humidity measured during this period. 

 

 

Figure 4-5 Time-series of observations used to calculate representativeness 
covariances. Blue points are classified as Clear Sky, Red points as Cloudy. 
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The Time Structure Functions (TSFs) were calculated over various sampling intervals as in 

§3.5.4 from this data set. These are plotted as scalars on logarithmic axes in Figure 4-6 for all 

the channels of the Radiometrics TP/WVP-3000, including ambient temperature, humidity (as 

lnq) and Tir. The low frequency channels, which are sensitive to humidity and cloud, show a 

steady increase from the shortest timescales (~1 min). The highest frequency channels, on 

the other hand, are sensitive only to the temperature in the lowest few hundred metres of the 

atmosphere. On short timescales (<103 s) their TSFs bottom out at the noise level of the 

radiometer, as it is unable to resolve atmospheric fluctuations below this level. On longer time 

scales the TSF often peak for periods ~12 h, corresponding to the diurnal cycle. This shows 

how the TSF combines the atmospheric variability and the instruments’ noise. 

 

 

Figure 4-6 Time Structure Functions of Radiometrics TP/WVP-3000 observations 
measured at Camborne 23-29 July 2004 in all dry conditions.  

Coloured lines show reference slopes: Red=0, Blue=1/3, Green=1/4. 

 

It is also possible to calculate a covariance matrix from these data. In the case of the 

mesoscale model with a 12 km grid, a time scale, Δt =1200 s was chosen to represent a 

typical advection timescale and the covariance was calculated from this to estimate the typical 

representativeness error, Mtyp: 

 ( ) ( )( ) ( ) ( )( )Tt t t t t tε= + Δ − + Δ −o o o oM y y y y  (4.10) 



 77

where yo(t) and yo(t+Δt) are the observations at times separated by interval, Δt, and ε is the 

expectation operator. 

 

When TSFs are calculated over shorter data sets they show great variability, depending on 

the atmospheric conditions. In clear skies the TSF of the low frequency channels can be an 

order of magnitude smaller than in cloudy conditions. The data set shown in Figure 4-5 was 

divided between clear and cloudy periods, according to a simple threshold of infrared 

brightness temperature (see §4.8.1) and the TSF covariances were recalculated for each 

classification. The corresponding covariances, Mclear and Mcloudy are shown on different colour 

scales in Figure 4-7. Mclear shows strong correlation between the low frequency channels 

most sensitive to humidity, while the temperature sounding channels are almost diagonal, but 

most components are small (<<0.05 K2). (The peak in the 11th channel is an instrumental 

error on this version of the radiometer.) Mcloudy shows has much larger terms (>>1 K2) in 

those channels most sensitive to cloud. This term dominates the observations error budget of 

these channels in cloudy conditions. M would be smaller for higher resolution models in 

proportion to the ratio of their resolutions to the power of the slope of the TSF in Figure 4-6. 

e.g. In a model with 3 km resolution, √diag(M) would be √2 smaller for the 26-54 GHz 

channels than in the 12 km model shown here. 

 

However, this method is likely to underestimate the spatial variability for the surface sensors, 

which are strongly coupled to surface properties. 

 

 

Figure 4-7 Covariance matrices of TSFs calculated from observations in clear and 
cloudy conditions over 1200 s periods 23-29/7/04 (n.b. different colour scales).  
First 12 channels are Radiometrics TP/WVP-3000 brightness temperatures [K2].  
Last 3 channels are ambient temperature [K2], total water [lnqt

2] and IR Tb [K2].  
This estimates the representativeness error in applying point measurements to a 12 km 

grid box, with typical advection speeds of 10 m/s. 

 

a) Mclear b) Mcloudy 
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The representativeness error has also been evaluated dynamically, by recalculating M from 

the time-series of observations within a 1 hr window around each observation used for 

retrieval. It is hoped that this technique will allow the observation errors to be reduced in 

periods of atmospheric stability, when more confidence can be placed that the radiometer 

observations are representative of the model’s state.  

4.4.1.4 Total Observation Error Covariance 

The magnitudes of the diagonal components of each term of R are shown in Table 4-1 for the 

12 channels of the microwave radiometer, surface temperature and humidity sensors (as 

dimensionless lnq) and infrared radiometer. In general the contributing error terms have 

similar magnitudes, which shows appropriate approximations have been made in the 

parametrizations. However, it is also noticeable that the channels near the 22 GHz line are 

dominated by spectroscopic uncertainties, whilst those channels most sensitive to cloud are 

dominated by their representativeness errors and the highest frequency channels, which are 

only sensitive to the temperature in the lowest few hundred metres, are dominated by 

radiometric noise. The total observation error covariances are shown in Figure 4-8. 

 

While inaccurate estimates of R would cause the variational method to produce results that 

are not strictly optimal, it alone would not cause the observations to be rejected. However, 

given the large uncertainty associated with the estimation of the background error 

covariances, this is unlikely to be the dominant source of non-optimality. 

 

Table 4-1 Diagonal components of Observation Error Covariance Matrix, √diag(R) 

evaluated for all dry weather conditions. Dominant terms highlighted in bold. 

Channel Measurement 

Noise, E 

Modelling  

Errors, F 

Representativeness 

Error, M 

Total  

Uncertainty, R 

Units

22.235 GHz 0.17 0.83 0.65 1.07 K 

23.035 GHz 0.12 0.84 0.67 1.08 K 

23.835 GHz 0.11 0.82 0.69 1.08 K 

26.235 GHz 0.13 0.67 0.78 1.04 K 

30.000 GHz 0.21 0.61 1.00 1.19 K 

51.250 GHz 0.18 1.10 1.70 2.04 K 

52.280 GHz 0.15 0.88 1.35 1.62 K 

53.850 GHz 0.17 0.35 0.32 0.50 K 

54.940 GHz 0.18 0.06 0.10 0.14 K 

56.660 GHz 0.19 0.05 0.10 0.22 K 

57.290 GHz 0.54 0.05 0.40 0.67 K 

58.800 GHz 0.18 0.06 0.11 0.22 K 

TAMB 0.17 0.00 0.22 0.28 K 

lnqAMB 0.01 0.00 0.02 0.02  

Tir 0.78 0.27 9.10 9.14 K 
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Figure 4-8 Total Observation Error Covariances, Rclear and Rcloudy as Figure 4-7. 

4.5 Jacobians 
All variational retrieval techniques rely on the derivative of the forward model. This is defined 

by the Jacobian matrix, H(x), which is a weighting function describing the sensitivity of the 

observation vector to changes in the state vector: 

 ( ) ∂
=
∂
yH x
x

 (4.11) 

The elements of H contain the partial derivatives ∂yi/∂xj where the subscript i refers to the 

channel number and j to the position in state vector.  

 

The Jacobian is needed in the minimisation of the cost function to determine the most 

probable atmospheric state as part of the retrieval or assimilation process. As will be shown in 

§4.6.3, this minimisation is an iterative procedure, which involves multiple evaluations of the 

Jacobian as it is nonlinear, in that it depends on the reference state, x. The Jacobian is also 

needed to conduct an error analysis. 

4.5.1 Calculation of Jacobians 

H, can be calculated by repeated evaluation of the forward model by perturbing each element 

of the reference state vector in turn by a small amount and examining the change in the 

observation vector. This is known as the brute force method and, although slow, is robust and 

simple to implement, so provides the basic technique used in these investigations. The 

perturbed profiles are then converted to p, T, q and qL and linearly averaged into layers, 

before re-evaluating the forward model. (The layer thickness also needs to be re-calculated to 

account for changes in density.)  

 

Perturbations of 1K in T and 0.001 in lnqt were chosen to calculate Jacobians by brute force. 

(The latter is equivalent to a 0.1% change in absolute humidity.) These represent a 

compromise between perturbations that are large enough not to introduce significant rounding 

errors in single precision calculations yet small enough for the response to be linear. This 

a) Rclear b) Rcloudy 
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selection was not trivial for the case of total water, especially near the threshold at which 

cloud starts to condense. These choices were tested for linearity and computational stability 

by checking the differences between the forward model results applying positive and negative 

perturbations are much less than the expected observation errors –  

i.e. H(x+δx)-H(x-δx)<<diag(R). 

 

Figure 4-9 shows the Jacobian’s temperature components for the oxygen band channels and 

humidity components for the lower frequency channels of the Radiometrics TP/WVP-3000, 

scaled by the model layer thickness to show weighting functions. These show the highest 

frequency channels nearest the centre of the oxygen absorption band are most sensitive to 

temperature changes near the surface, whilst lower frequency channels in the oxygen band 

have more uniform sensitivity to temperature changes from 0-4 km. However, the Jacobian’s 

humidity components have very similar shapes as the atmosphere is optically thin at these 

frequencies. This shows that there is less information available on the vertical distribution of 

humidity than temperature. 

 

 

Figure 4-9 Jacobian’s temperature component of 51-59 GHz channels (left) and 
humidity component for 22-51 GHz channels of Radiometrics TP/WVP-3000 (right), 

scaled by model layer thickness, Δz:  H/Δz =(∂y/∂x)/Δz.  

Calculated for clear US standard atmosphere. 

 

It would be much more efficient to calculate Jacobians analytically, but this requires the 

differentiation of the forward model. This is implemented in the fast model, RTTOV [Saunders 

et al., 1999], described in §2.5.4. However, RTTOV has been designed for nadir-viewing 

satellite geometry and would require extensive modification to be applied to ground-based 

instruments. Other utilities are available to provide automatic differentiation of forward models 

– for example, TAMC [Giering, 1999]. However, this has not been pursued given the 

complexity of the code used in the radiative transfer model here. 
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4.5.2 Truncating Jacobian calculations at higher levels 

Methods to speed up the forward model calculations were discussed in §2.5. There are, 

however, some additional measures that can be introduced to reduce the time taken to 

calculate Jacobians by brute force. The Jacobians are only calculated for levels below 8 km, 

and are assumed to be negligible at higher levels in the ground-based viewing geometry 

based on Figure 4-9, so higher levels are fixed to H=0. This means that the retrievals will not 

modify the a priori profile above this level. 

 

4.6 Error Analysis 
Part of the beauty of Bayesian methods is that they allow quantification of the performance of 

assimilation and retrieval methods by propagating statistical errors from the observations and 

background. They can also provide an assessment of the information content and vertical 

resolution of the observations, accounting for the assumed error characteristics. These are 

useful tools to quantify the benefits of different combinations of channel frequencies, view 

angles, noise levels, sampling sequences and when optimising instrument configurations as 

well as assessing the accuracy of their products and their impact on NWP. 

4.6.1 Analysis Error Covariance 

Following the assumption that the observations and background pdfs are Gaussian and 

uncorrelated, it is possible to estimate the expected error in the analysis, xa. Rodgers [2000] 

shows in the linear case, the covariance of the analysed state vector, A, is a simple function 

of the background error covariance, B, and that of the observations, R, mapped into state 

space by H: 

 ( ) 1−T -1 -1A = H R H +B  (4.12) 

Rodgers [2000] later goes on to show that equation (4.12) can also be applied for nonlinear 

problems that can be linearised about the analysis solution, xa, within the error bars of the 

retrieval. In this case, A will be state-dependent, as it depends on the Jacobians evaluated 

about the analysis state. 

 

A has been evaluated for different instrument combinations in a clear US standard 

atmosphere. The full observation vector, y, was used to evaluate the influence of the 

radiometer and surface sensors together. This was later supplemented with Tir. The influence 

of only the surface sensors was investigated by removing the other channels from R and H 

and repeating the calculation of Ars. This analysis was repeated using the errors currently 

assumed in operational assimilation of radiosonde data (Rrs) in the Met Office Unified Model, 

which are diagonal and dominated by representativeness, but are not necessarily accurate as 

they were derived empirically for an older version of the UM. In this case H=I, the identity 

matrix.  
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The diagonal terms of A are plotted in Figure 4-10. This shows the error in the temperature 

profile retrieved by the radiometer (including surface sensors) is expected to approach 0.1 K 

near the surface, but increases linearly with height, to exceed 1 K above 5 km. For the 

humidity profile, A varies greatly with the x due to the nonlinearity of H. In this example the 

lnq error in the radiometer’s retrieval increases from 0.05 near the surface to 0.40 by 3 km. 

These errors correspond to uncertainties of 5% and 40% in humidity, respectively. The 

analysis error covariance, A, for the radiometer’s retrievals represent a substantial 

improvement on the background, BATOVS, in the lowest 3 km (and >5 km for the temperature) 

and compared to the surface sensors only, which only influence the lowest 500 m. (The 

surface sensors’ influence is determined by the correlation between the lowest levels in B.) 

Figure 4-10 shows the retrievals from the radiometer are of comparable accuracy to the 

radiosonde profiles below ~1 km, but poorer above this.  

 

Figure 4-10 Error Analysis for 1D-VAR retrievals. Background error covariance matrix 

from mesoscale model, √diag(BATOVS) (black) and analysis error covariances matrices, 

√diag(A), with surface sensors only (green), radiometers and surface sensors (red), 

and radiosonde only (blue). Diagonal components plotted for lowest 5 km of 
temperature [K] and humidity (lnq). 

 

When BNMC is used instead of BATOVS, A gives more limited improvements in temperature, up 

to ≈4 km, while the analysed humidity profile improves the background slightly at all levels up 

to ≈5 km, although the humidity errors were much larger at high levels than with BATOVS. With 

BNMC retrievals from the radiometer system are expected to have larger errors than the 

radiosondes above ~500 m. 
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Figure 4-11 As Figure 4-10, but calculated with BNMC, instead of BATOVS 

4.6.2 Vertical Resolution 

However, A only tells part of the story. The other important aspect of the retrieval’s 

performance is the vertical resolution – its ability to resolve a perturbation in state space. One 

simple, robust definition of the vertical resolution, Δz, is the reciprocal of the diagonal of the 

averaging kernel matrix [Rodgers, 2000]: 

 ( )1/z z diagδ −Δ = TAH R H  (4.13) 

where δz is the level spacing. 

 

This follows the concept of effective data density [Purser and Huang, 1993], whereby the 

trace of A represents the number of degrees of freedom at each level and its reciprocal is the 

number of levels per degree of freedom, hence vertical resolution. 

 

 

Figure 4-12 Vertical Resolution, Δz, of temperature and humidity (lnq)  

from microwave radiometer and surface sensors (black solid line) 
and radiosondes (blue, dashed line) in clear standard atmosphere using BATOVS 
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Δz is evaluated in Figure 4-12, which shows that the vertical resolution of temperature profiles 

degrades with height, from ~700 m near the surface, approximately linearly as twice the 

height from 0.5-4 km. For lnq, it degrades very rapidly above 1.6 km, from ~1.6 km near the 

surface, but is critically dependent on the reference state, x, due to non-linearity in H.  

 

The vertical resolution is also sensitive to the choice of B, which makes it difficult to compare 

these results with other definitions, which tend to produce more optimistic results. For 

example, Smith et al. [1999] defined the vertical resolution from the vertical covariance of the 

difference between the retrieved profiles and the truth (co-located radiosondes). Liljegren et 

al. [2005] used this definition to calculate the vertical resolution of retrievals from a similar 

microwave radiometer as 0.75 km at the surface, increasing to 2.75 km by 4 km for the 

retrieved temperature profile, and 0.75 km at the surface, increasing to 1 km by 4 km for the 

humidity profiles. However, all definitions of Δz are much larger than the vertical spacing of 

the model levels, shown as the crosses in Figure 4-12, which is important if the retrievals are 

to be well represented on this vertical grid. However, this definition does have the advantage 

that it should be less dependent on the choice of humidity control variable. 

 

The apparent degradation of vertical resolution near the surface is also due to the assumed 

correlations in B. If the correlations between the 6 lowest levels in B are suppressed by a 

factor of 10 for both temperature and humidity, the resulting vertical resolution do not increase 

near the surface in this way. These correlations in B represent the trade-off between vertical 

resolution and suppression of noise in the retrievals and can be adjusted to suit particular 

applications. 

 

The vertical resolution was also calculated for radiosondes if they were assimilated using 

BATOVS. Figure 4-12 shows the vertical resolution even available from the radiosondes is 

limited by the correlations in B to Δz~1 km near the surface, and Δz~2 km by 4 km for both 

temperature and humidity. 

4.6.3 Validation of B matrices by O-B statistics 

Although the derivation of B matrices is often seen as something of a black art, it is possible 

to check their consistency with the R matrix by analysing the O-B statistics (§2.7.5) of a series 

of real Observations minus Backgrounds residuals. O-B is the term given to the difference 

between the observation and the background and is usually calculated in observation space. 

The covariance of this difference can be calculated as: 

 ( )( )( ) ( )
T

O B H Hε− = − −b bS y x y x  (4.14) 

This can be compared to the theoretical value, AO-B, given by: 

 = +T
O-BA H BH R  (4.15) 
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The diagonal terms of AO-B are compared with the standard deviation of the observations’ 

residuals from the background in clear sky conditions over 1 year of data in Figure 4-13. This 

shows that diag(SO-B)>diag(AO-B) for the 22-24 GHz channels, which are most sensitive to 

humidity. This figure also shows that HTBH dominates the Rclear terms for these channels, 

which suggests that the humidity error is somewhat under-estimated in BATOVS.  

 

This analysis has also been applied using the covariance calculated by the NMC method, 

BNMC. This initially produced an HTBH term which underestimated the observed O-B variance. 

A better match was obtained by multiplying the whole covariance matrix by a factor of 3 and 

scaling the humidity quadrant by a further factor of 3. This scaling was applied to estimate 

BNMC in §4.3.2.2 to give O-B statistics that are consistent with expectations. 
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Figure 4-13 O-B statistics for clear cases compared to expected values, √diag(HTBH+R) 

 

The O-B statistics can also be used to correct the observations’ bias empirically. It is 

important that they are consistent as this will encourage convergence to the true minimum in 

nonlinear problems, which may have multiple minima. Figure 4-13 also shows the mean bias 

of the radiometer observations over ~1 year with respect to the model background. These 

biases are broadly consistent with those found in the absorption model validation exercise 

(§2.7.2).  

4.7 Cost function minimisation 
The conditional probability density function given by equation (4.2) can also be thought of as 

a cost function, J(x): its minimum value corresponds to the maximum a posteriori probability 

state, xa : 

 ( ) ( ) ( )1 1T T
J H H− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b b o ox x x B x x y x R y x  (4.16)  
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4.7.1 The Linear Case 

It is possible to minimise equation (4.16) analytically in the limiting case where H(x) is a linear 

function and xb and y have Gaussian error characteristics, described by their covariances, B 

and R, respectively. 

 

The application of microwave channels near the centre of the strong 60 GHz absorption band 

to retrieve temperature profiles in the lowest few hundred metres of the atmosphere is an 

example of a linear problem, where the cost function can be minimised analytically. An 

example of this is the retrieval of temperature profiles up to 600 m by Kadygrov and Pick 

[1998].  

4.7.2 Gauss-Newton Minimisation 

However, the humidity component of the retrievals is nonlinear. This also becomes important 

for lower frequency channels in the oxygen band used to profile temperature above ~1 km.  

Minimising a nonlinear cost function can be achieved by finding the value of x for which its 

gradient is zero. Newton’s method [Newton, 1669] can be applied iteratively to find the 

minimum of a nonlinear scalar function of a vector, f(x):  

 ( ) ( )1
1i i if f

−
+ ⎡ ⎤= − ∇⎣ ⎦xx x x x  (4.17) 

where xi and xi+1 are the state vectors before and after iteration i. 

 

The vector derivative of the cost function in the form of equation (4.16) is given by: 

 ( ) ( )1 1TT
J H H− −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤∇ = − ∇ − + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b b
x x x R y x x x B x x  (4.18) 

Further differentiation of f J= ∇x , re-writing ( )H∇x x  as H, yields the Hessian: 

 ( ) ( )1 1f H H− −⎡ ⎤ ⎡ ⎤∇ = − ∇ −⎣ ⎦⎢ ⎥⎣ ⎦
TT -1

x xB +H R H x R y x  (4.19) 

The third term on the right hand side of equation (4.19) is small in moderately nonlinear 

problems and can be ignored in small residual problems [Rodgers, 2000]. Substituting the 

remaining terms into (4.17) yields the Gauss-Newton method: 

 ( ) ( ) ( )1i i i i i i iH+
⎡ ⎤= + + − − −⎣ ⎦

-1-1 T -1 T -1 o -1 bx x B H R H H R y (x ) B x x  (4.20) 

 

It is usual to start the iterations at the background state, xb, and continue iterations until a 

convergence criterion is satisfied (see §4.7.4), at which point xi+1 gives the analysis, xa, the 

retrieved best estimate of the truth. However, it is also possible to modify the first guess from 

xb to linearise the problem (see §4.8.2). 
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4.7.3 Levenberg-Marquardt Minimisation 

A modification of the Gauss-Newton method was suggested by Levenberg and Marquardt 

[Levenberg, 1944] and [Marquardt, 1963] to improve the convergence in moderately nonlinear 

problems, where the first guess is too far from the truth for the increment to be reliable. This 

method adds a parameter, γ, to modify the direction of the step, which is adjusted after each 

iteration. In the form suggested by Rodgers [2000], the Levenberg-Marquardt method can be 

written as: 

 ( ) ( ) ( )1 (1 )i i i i i i iHγ+
⎡ ⎤= + + + − − −⎣ ⎦

-1-1 T -1 T -1 o -1 bx x B H R H H R y (x ) B x x  (4.21) 

where γ is a factor, which is adjusted after each iteration depending on how the cost function 

has changed: 

• If J(x) increases, reject this step, increase γ by a factor of 10 and repeat the iteration, 

• If J(x) decreases, accept this step, decrease γ by a factor of 2 for the next iteration. 

 

These factors were adjusted empirically to minimise the number of steps needed to reach 

convergence, starting with an initial value of γ = 2. 

 

It can be seen that as γ → 0, the step tends towards that same as the Gauss-Newton (4.20). 

As γ → ∞, the step tends toward the steepest descent of the cost function, allowing the search 

to jump out of a local minimum, towards a more global one. This is shown schematically in 

Figure 4-14. Such local minima are often found in nonlinear problems [Dharssi et al., 1992]. 

 

Figure 4-14 Schematic of minimisation of nonlinear cost function by Levenberg-
Marquardt method, showing state vector, x, at each iteration (blue arrows) from first 

guess, xg, to analysis, xa. Red arrows are iterations that fail to reduce cost function, J. 
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4.7.4 Convergence Testing 

Each successful iteration of the minimisation is expected to produce a smaller increment to x. 

The iterations are repeated until a convergence criterion is satisfied at which point the 

retrieval is deemed to have converged. While it is possible to continue iterations until the 

machine precision is reached, this is inefficient, as steps much smaller than the expected 

error of the retrieval are not statistically significant [Press et al., 1995]. Many variations of 

convergence criteria from the literature have been tried. For example, the Met Office’s 

implementation of the Levenberg-Marquardt method for 1D-VAR [Collard, 2004] tests whether 

the cost function, J, has decreased by less than 1% and that the gradient is less than J2. This 

is because if γ is large it is possible that the cost function will not change between iterations 

simply because of the small step size in the minimisation. But this is quite a loose criterion. 

 

Finally, the method proposed by Rodgers [2000] is adopted here: namely to check the size of 

the step in measurement space after each iteration by the following χ2 test: 

 ( ) ( )1 1( ) ( ) ( ) ( )
T

i i i iH H H H mδ+ +⎡ ⎤ ⎡ ⎤− − <<⎣ ⎦ ⎣ ⎦
-1

yx x S x x  (4.22) 

where m is the dimension of y (m=15 in this case) and Sδy is the covariance matrix between 

yo and H(xi), given by: 

 ( )= +
-1T

δyS R HBH R R  (4.23) 

The threshold was then tuned to optimise the radiometer retrievals. On the first iterations, 

<<m is taken to mean <m/2, however this is relaxed to <m after 10 iterations. Typically it 

takes 3-10 iterations to reach convergence, each requiring ~0.25 s of CPU time on a 2.4 GHz 

Pentium IV using the Fast Absorption Predictor model. 

4.7.5 Testing for Correct convergence 

Once nonlinear problems have converged it is necessary to test for consistency of the 

retrieved solution with the observations and/or prior to check whether the minimisation has 

converged to a spurious minimum. This can be achieved as a χ2 test, which compares a 

residual with the expected distribution using a theoretical χ2 pdf to assess its statistical 

significance. In this case, the difference of the forward modelled analysis state, H(xa) and 

observation vector, yo, are compared with the observation error covariance matrix, R, to 

check if the retrieval is consistent with the observation by calculating:  

 2 ( ) ( )
T

H Hχ ⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦
a o -1 a ox y R x y  (4.24) 

 

This consistency check was compared to other tests by comparing their performance when 

filtering retrievals of Integrated Water Vapour (IWV). This formed the basis for the selection of 

the χ2 threshold, which was fine-tuned to optimise the convergence rate, while ensuring the 

standard deviation of the IWV retrievals did not increase significantly above the nominal 
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accuracy of 0.88 kg/m2. This test was found to be more efficient than others proposed in 

Rodgers [2000].  

 

χ2 of solutions should follow a χ2 distribution with m degrees of freedom. This would imply a 

conservative χ2 threshold of 31 should reject less than 1% of a population from a pure χ2 

distribution with 15 degrees of freedom. However, observations in these extreme conditions 

may be of great interest, so it is important not to reject them. The observed distribution of this 

χ2 was found to have a large number of cases outside this limit, which nevertheless yielded 

good retrievals. Hence retrievals with χ2>100 were rejected. The choice of χ2 threshold was 

found to have little influence on the statistics of the retrieved profiles. 

 

4.8 Pre-processing Classification and Quality Control 
Examination of the performance of the retrieval scheme showed there were often problems 

when profiles approach the threshold of cloud formation – the residuals often oscillate without 

reaching convergence because the minimisation was not sufficiently linear. Although this was 

partially improved by the implementation of the Levenberg-Marquardt method of minimisation, 

it still persisted. Convergence problems where lnqt approaches the cloud threshold can also 

be caused by the error characteristics of Tir, which can be highly non-Gaussian.  

 

4.8.1 Cloud Classification 
These convergence problems have been addressed by introducing a cloud classification as a 

pre-processing step to the retrieval, based on a threshold of the infrared brightness 

temperature, Tir. If Tir  was within 40 K of the ambient temperature the profile was classified as 

cloudy and the retrieval proceeds as described above. (This threshold was derived 

empirically.) Otherwise, the profile was classified as clear and the control variable changed 

from lnqt to the logarithm of specific humidity, lnq, and an addition term, Jsat, is added to the 

cost function to prevent saturation [Phalippou, 1996]:  

 ( ) ( ) (ln ln )  if sat satp psat sat sat
sat i i i i i i i i

i i
J c x x c q q q q= − = − ≥∑ ∑x  (4.25) 

where qi
sat is the specific humidity at saturation at level, i, psat and ci are constants (ci=106). 

 

The cubic form, psat=3, has been selected because it is not highly nonlinear, while permitting a 

nonlinear gradient. Note that the first and second derivates (gradient and Hessian) are 

continuous at the junction point xi =xi
sat. When this super-saturation term is included in the 

cost function, the iterations required for the Levenberg-Marquardt method (4.21) become: 
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∑

∑

-1 T -1

T -1 o -1 b

x x B H R H

H R y x B x x
 (4.26) 

 

In clear cases, the representativeness term in R can be reduced by re-evaluating it in only 

clear sky conditions to allow more accurate retrievals in clear conditions.  

4.8.2 Modifying the first guess to linearise problem 

Although switching the humidity control variable, observation errors and super-saturation 

constraint in the cloud classification scheme works well for 1D-VAR retrievals, it is likely to 

prove problematic when applied to higher dimensional data assimilation. This is because the 

switching may not be consistent with the evolution of the surrounding background and may 

result in stability problems due to lack of thermodynamic balance. A preferable approach is to 

modify the first guess from the background. Until now, the background has been used as the 

first guess to initialise the minimisation, but it is possible to start the iterations from any first 

guess. This can be beneficial if the cost function is more linear between the first guess and 

the solution. 

 

In clear conditions, the first guess can be modified from the background to ensure no level’s 

humidity exceeds the cloud threshold. It is not so straightforward to modify the background in 

cloudy cases – a simple scheme evaluated here saturates the humidity at the level at which 

the temperature corresponds to Tir, whilst ensuring that lower levels are not saturated.  

 

It may also be necessary to ensure that the background profile’s IWV and ILW are conserved 

when modifying it, although these constraints are likely to be implicit in the 1D-VAR retrievals, 

given the linear relationship between them and the observations. 

4.8.3 Rain Detection 

It is necessary to exclude observations in moderate or heavy rainfall (§2.4). Rain-affected 

observations are rejected, based on the combined output of the rain sensor and cases where 

ILW>1000 g/m2. This was empirically found to be associated with precipitation, whether or not 

it reached the ground (in §6.5). Following the analysis presented in §5.5.2, cases where the 

retrieved IWV differs by more than 3 kg/m2 from that measured from a co-located GPS sensor 

could be rejected as likely to be contaminated by rain. Lopez et al. [2006] suggested rain 

could be filtered by rejecting all cases where the observations differ by more than 3 K from 

the forward-modelled background as part of their assimilation of data from a two-channel 

ground-based microwave radiometer. However, this seems too strict, given the large changes 

of Tb caused by cloud variability.  
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4.8.4 Additional terms in cost function for physical constraints 

It is possible to add extra terms in the cost function to constrain the retrievals to obey physical 

or empirical rules. These would be advantageous if the retrieved profiles were found to have 

undesirable characteristics – either consistently or occasionally. For example Peckham and 

Grippa [2000] used regularisation to stabilise the retrieval of temperature profiles by 

constraining them towards the adiabatic lapse rate.  

 

Another example of this would be to inhibit the retrieval of super-adiabatic layers, where the 

temperature lapse rate is greater than the dry adiabatic lapse rate (9.8 K/km). These are often 

found at the surface in the presence of strong solar heating prior to convective thermals. 

However, elevated super-adiabatic layers thicker than 40 hPa are rare [Slonaker et al., 1996] 

as mixing would cause them to disappear rapidly. Although there is no explicit constraint in 

the cost function to penalise the retrieval of super-adiabatic layers, the correlations in B 

effectively inhibit their formation and they are only retrieved in the lowest 1 km. In fact, the 

climatology of super-adiabatic layers in the retrieved profiles more closely matches that of the 

radiosondes, than the mesoscale model background, where they are limited to the lowest 

80 m. Based on this, no additional super-adiabatic constraint is needed in the cost function. 

 

Another possible constraint would be to prevent the formation of cloud liquid water content 

greater than ~3 g/m3. This corresponds to the maximum value typically found in 

cumulonimbus clouds [Sand et al., 1984], although these are usually associated with heavy 

precipitation making retrievals impossible. However, analysis of the background and analysis 

profiles shows this value is never approached in practise, at the total water control variable 

provides an effective constraint implicitly. 

4.9 Results of 1D-VAR retrieval experiments 
This section discusses the results of 1D-VAR retrieval experiments based on different 

combinations of observations, backgrounds, first guesses and their errors and retrieval 

configurations suggested in the previous section. Each experiment was run on 706 cases, 

covering a year of data from Camborne from April 2004 to March 2005. Approx 65% of these 

were classified as clear. (n.b. This is much higher than the 38% fraction suggested by Tir 

observations.) The retrievals were validated against temperature and humidity profiles 

measured by operational Vaisala RS80 radiosondes launched twice daily during this period. 

The experiments’ configurations are summarised in Table 4-2. 
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Table 4-2 Configuration of 1D-VAR Retrieval Experiments 
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§ y R xb B xg xt Min 

4.9.1.1 Synth Fixed Synth BATOVS xb Sonde LM 

4.9.1.2 Synth Clear/cloudy Synth BATOVS xb Sonde LM 

4.9.1.3 Synth Clear/cloudy Synth BATOVS xb Sonde GN 

4.9.2 Synth Fixed Meso. BNMC xb Sonde LM 

4.9.3 Synth Fixed Meso. BNMC xb mod Sonde LM 

4.9.4 Real Fixed Meso. BNMC xb Sonde LM 

4.9.5 Real Dynamic rep. Meso. BNMC xb Sonde LM 

 

4.9.1 1D-VAR Results with synthetic observations and background 
Initially, synthetic observations, yo, and backgrounds, xb, were generated to be consistent 

with R and BATOVS, respectively, for each radiosonde launched from Camborne during the 

year. As the errors in these covariance matrices are correlated, this synthesis must be 

performed in eigenvector space, where they are diagonal. Kleespies and Crosby [2001] 

described a method of modelling a vector of correlated noise, εy by: 

 ε =y V Λz  (4.27) 

where  V is a matrix of the eigenvectors of R,  

Λ  is a matrix, with a diagonal composed of the square root of the eigenvalues of R,  

 z is a vector on Gaussian random numbers with mean μ=0, standard deviation σ=1. 

 

The use of synthetic observations and background was intended to ensure the retrieval 

scheme was functioning correctly, independently of the accuracy of the assumptions about 

their error characteristics. In this case the radiosonde profiles are taken as the truth and do 

not contribute any errors to the validation, as illustrated schematically in Figure 4-15. 
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Figure 4-15 Schematic 1D-VAR with synthetic observations and backgrounds 

4.9.1.1 Without Cloud Classification 

 

Figure 4-16 Statistics of 1D-VAR retrievals using synthetic observations and 
background. 484 cases from Camborne over 1 year. Dashed lines show the mean bias.  
Solid lines show standard deviation of difference between retrieved profiles and truth.  

Dotted lines show the diagonal terms of error covariances, √diag(BATOVS) and √diag(A).  

Black lines show the background. Red lines show the statistics of the analysis. 
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Initially, all the retrievals were processed with no cloud classification. 75% of cases converged 

in an average of 8.1 iterations. The standard deviations of the background and analysis 

profiles, shown respectively as the solid black and red lines in Figure 4-16, follow closely the 

theoretical expectations from √diag(BATOVS) and √diag(A) (shown as the dotted lines). Both 

temperature and humidity retrievals show improvements on the background up to 5 km. 

Surprisingly, the background profiles for both temperature and humidity show a small bias. 

This is attributed to those backgrounds which are slightly biased with respect to the truth 

being more likely to converge and pass the quality control χ2 test, due to nonlinearity in the 

retrieval. This bias is corrected in the analysis by the retrievals. For example, if some levels in 

the true profile almost saturated, clear background profiles are more likely to converge than 

cloudy ones. 

 

Closer investigation revealed that most of the cases that did not converge were affected by 

cloud. These were subsequently analysed separately from the clear cases. 

4.9.1.2 With Cloud Classification 

 

Figure 4-17 As Figure 4-16, but for 334 clear (upper) and 141 cloudy (lower) cases 

 

Figure 4-17 shows the statistics of the profiles retrieved from the same data set and technique 

as applied in the previous section, but with the addition of the cloud classification scheme. In 
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cases classified as clear this tightens the observation error covariance, switches the humidity 

control variable to lnq and includes an explicit super-saturation constraint, described in §4.8.1. 

 

Of the clear cases 74% converge and satisfy the χ2 test in an average of 4.7 iterations. The 

standard deviations of their analysis and background profiles show less contrast than 

expected from A and B, respectively. i.e. There is less difference between the red and black  

solid lines in Figure 4-17 than between the dotted lines. This shows the backgrounds are not 

as diverse as expected from B and that the retrievals are not adding as much information as 

expected by the difference of A-B. It is likely that this is due to a deficiency in the super-

saturation constraint. The analyses can be improved towards √diag(A) by reducing the χ2 

threshold at the expensive of reducing the number of cases. But this does not affect the 

temperature statistics of xb, which remain smaller than √diag(BATOVS). Given the problems 

encountered with the super-saturation constraint, it was not used in the other experiments. 

 
Although the cloudy cases take longer to reach convergence (10.3 iterations on average), and 

only 56% of cases converge and pass the χ2 test, the standard deviations almost exactly 

match those expected from A and B. Again, the background shows a small, but consistent 

bias with respect to the truth, which is corrected in the analysis. 

4.9.1.3 Comparison with Gauss-Newton method 

The same data set of synthetic observations and backgrounds was re-processed with the 

Gauss-Newton minimisation method, instead of Levenberg-Marquardt. This resulted in very 

similar statistics to the Levenberg-Marquardt method, and a slightly higher convergence rate 

in the same number of iterations for clear conditions. However, in cloudy conditions, the 

convergence rate dropped to an unacceptably low 15% (albeit taking 2 fewer iterations on 

average) and produced similar standard deviations, albeit with slightly larger biases. This 

shows the benefit of the Levenberg-Marquardt method in cloudy cases, thanks to its better 

performance in nonlinear problems, so it is used for the remainder of the 1D-VAR retrieval 

experiments. 

4.9.2 Synthetic observations with mesoscale background 

When using BNMC instead of BATOVS, which has much larger humidity errors at high level, it 

became apparent that the method of synthesising xb could generate unphysical, super-

saturated background profiles, which degraded the retrievals due to the excessive 

nonlinearity. This is not the case when real backgrounds are taken from an NWP model 

(§4.3.1). These backgrounds were corrected for the mean bias found with respect to co-

located radiosondes and the same retrieval technique described in the previous section 

(§4.9.1.2) was applied, using BNMC instead of BATOVS, but with no clear sky super-saturation 

constraint, as illustrated in Figure 4-18. 
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This results in a much better convergence rate (98%), requiring fewer iterations: an average 

of 4.7 iterations in clear cases and 8.2 in cloudy cases. This clearly shows the increased 

nonlinearity in cloudy cases requires more iterations. However, the retrievals’ statistics in 

Figure 4-19 show they have a much smaller impact – improving the background only in the 

lowest 3 km for temperature and only marginally for humidity. This is due, in part, to an 

excessive error variance in the temperature profiles of the background and analysis at 

~1.5 km, corresponding to the typical height of the boundary layer top, due to their limited 

vertical resolution. The disappointing humidity retrievals show how difficult this is given their 

large assumed background errors. This highlights the sensitivity of the conclusions to 

assumptions about the errors in the background. 

 

 

Figure 4-18 Schematic 1D-VAR with synthetic observations and background from 
T+6 hr forecast from NWP model 
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Figure 4-19 As Figure 4-17, but with real backgrounds from mesoscale model and BNMC. 
449 clear (upper panels) and 242 cloudy (lower panels) cases. 

4.9.3 Results with modified first guess 

The same retrieval technique was repeated using first guesses based on mesoscale model 

backgrounds modified according to the cloud classification (see §4.8.2). This gave almost 

identical results and convergence rates. This suggests that the retrievals are rapidly adjusting 

the profiles to balance the humidity modifications, as shown by the statistics of the IWV 

retrievals, which remained unchanged (SD=0.80 kg/m2). However, their efficiency may be 

improved by increasing the sophistication of the first guess modification scheme. In the 

results (not shown), the bias in the clear humidity retrievals is worse than with the unmodified 

background, however, their SD is a little better in the cloudy cases. The temperature retrievals 

are little changed, and still have high SD (and bias in cloudy cases) at the typical level of the 

inversion (~1.5 km). 

4.9.4 Results with real observations 

Radiometer observations unaffected by rain were available at Camborne within 300 s of the 

validation time for approximately 54% of the cases during the 2004/05 period. This reduces 

the number of cases available to validate the retrievals and adds noise to the statistics. When 

applying the same retrieval technique described in §4.9.2 to real observations, it was clear 

from the residuals that the observations were not consistent with the background. Before the 
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retrievals can be meaningfully interpreted the observations have been empirically corrected 

by the mean bias found in the O-B analysis of clear cases (see §4.6.3). Now the radiosonde 

is no longer regarded as the truth but an independent observation used to validate the 

retrievals and includes errors, Rrs, as shown in Figure 4-20. 

 

 

Figure 4-20 Schematic 1D-VAR with real observations and NWP background. 
(Dashed arrow indicates time series of observations used to calculate M dynamically.) 
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Figure 4-21 - As Figure 4-19, but with real, bias corrected observations  
142 clear (upper panels) and 206 cloudy (lower panels) cases. 

  

These retrievals with real observations have a slightly lower converge rate (91%) than with 

synthetic observations, and take an average of 5.8 iterations to converge. Figure 4-21 shows 

the SD of the temperature profiles retrieved from real observations are close to those from 

synthetic data, as are the humidity profiles in clear cases. However, above 2 km there is a 

bias and very large variance in the retrieved humidity profiles. Both the background and 

analysis again show excessive variance compared to theoretical expectations at 1-2 km for 

temperature, but also at 2-4 km for humidity. 

 

When retrievals were attempted with (bias-corrected) real observations using BATOVS, although 

a very high convergence rate was achieved, the analyses were no better than the 

background. This again highlights the importance of using an appropriate background error 

covariance.  

 

4.9.5 Results Dynamic Representativeness 

Although radiometer observations are available at high time-resolution (~1/min), only spot 

measurements closest to the time of the radiosondes used for validation have been used in 
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the retrievals so far. It is possible to exploit the high time-resolution to some extent by using 

the variability of the time-series of observations within 1 hr of the observation to calculate the 

representativeness error dynamically, as described in §4.4.1.3. This was implemented for the 

same data set and retrieval technique used in §4.9.4, still using only instantaneous 

observations. 

 

It was hoped that the use of dynamic representativeness errors would allow the retrievals to 

be more accurate in situations where the atmospheric conditions are changing slowly. 

However, the results using the dynamic representativeness error (not shown) are very similar 

to those using fixed values for clear and cloudy cases, although fractionally higher 

convergence rates were achieved in cloudy conditions. This is not necessarily bad news, as 

the errors can be overestimated in conditions of broken cloud by this method.  

 

4.9.6 1D-VAR retrievals of Integrated Water Vapour (IWV) 
In addition to validating the retrievals against radiosonde profiles of temperature and humidity, 

it is also possible to compare the Integrated Water Vapour (IWV) in the retrieved profile with 

that from the radiosonde. As the IWV is merely the integral of the absolute humidity over the 

vertical profile, it does not represent any additional information. Nevertheless comparison of 

the retrievals’ and radiosondes’ IWV provides a check on the retrievals and allows 

comparison with other retrieval techniques. 

 

With synthetic observations, the profiles retrieved by 1D-VAR produced IWVs with a standard 

deviation of ≈0.8 kg/m2 compared to the radiosondes taken as the truth. When real 

observations were used, this increased slightly to ≈0.9 kg/m2. These figures should be 

compared to the standard deviation of the background profiles’ IWV compared to the truth of 

≈2.2 kg/m2. As will be shown in §5.5, the 1D-VAR retrievals provide IWV with comparable 

accuracy to regression techniques. It is, therefore, unlikely that there would be any benefit in 

adding an additional term in the retrieval’s cost function to constrain it to fit an a priori 

estimate of IWV, as the variational retrievals do a good job of this implicitly because if the 

retrieval is optimal for the humidity profile, it is also optimal for IWV. 

 

4.9.7 Example retrievals with a misplaced background inversion 

Figure 4-22 shows an example of 1D-VAR retrievals using synthetic observations, based on a 

real radiosonde profile  for Camborne (UK) at 1121 UTC on 9/12/2004 and NWP background 

profile from a 5 hr forecast, valid 21 minutes earlier. This case was selected because the 

model had forecast the inversion ~200 m too low and overestimated the humidity by a factor 

of ~2 over most of the profile, while matching the observed surface conditions. The retrieval 

was repeated for 105 such sets of observations, all of which converged in 4 iterations.  
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The retrieved profiles are closely clustered, with typical standard deviations of 0.2-0.5 K in 

temperature and 0.05-0.10 in lnq, showing they are relatively robust in the presence of 

observation noise. Both the background and retrieved profiles have a temperature inversion 

at ~500 m, where initially the humidity approaches saturation and liquid water cloud is 

generated. In all cases, the retrieval removes this cloud, reduces the IWV from the 

background value to match the radiosonde’s and gives profiles closer to the truth than the 

background. However, the structure of the background error covariance, B, makes it 

impossible for the retrieval to move a misplaced inversion vertically, without additional 

information. When the first guess was modified by increasing the temperature from 500-

600 m by 4 K, the retrieval was still unable to reproduce this, as it is strongly constrained by 

the background. If the observations had more information on the inversion height, the 

background would not constrain the retrievals so strongly in this way. 

 

 

Figure 4-22 Example retrievals (red) with 105 synthetic observations, with profiles 
between NWP model background (black) and radiosonde (blue). Left panel shows 
temperature profiles. Right panel shows profiles of relative humidity (RHqt=qt/qsat)  

and cloud liquid water content [g/m3] (dotted lines). 

 

 

Background
Radiosonde 

Retrieval 
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4.9.8 Summary of 1D-VAR Retrieval Experiment Results 

Retrievals were first tested with synthetic backgrounds and observations. Results matched 

theoretical expectations in clear skies, but poorer convergence was experienced in cloudy 

conditions, due to greater nonlinearity. The Levenberg-Marquardt method was found to 

improve on the performance of the Gauss-Newton method in these cases. Two methods were 

attempted to further improve the convergence in cloudy cases by making the forward model 

more linear between the first guess and the solution. However, there was an unidentified 

problem with the super-saturation constraint used for clear cases in the cloud classification 

scheme. An alternative approach, to modify the humidity in the first guess to be consistent 

with the infrared observations resolved this. 

 

Synthetically generated background states were found to be prone to being unphysical. 

However, taking the background data from NWP models reduced the impact of the synthetic 

observations on temperature to the lowest 3 km, even after bias correction. Real observations 

also need bias correction, after which they gave results broadly consistent with synthetic 

observations. The temperature profiles retrieved from real observations were in line with 

theoretical expectations, but the humidity retrievals did not improve the background state 

much. This is a common problem encountered when trying to assimilate observations of 

humidity. Atmospheric water vapour is highly variable in space and time and not well 

represented in current NWP models, which have to parametrize the processes responsible for 

its sources and sinks. This means they are unable to provide accurate background data for 

humidity profiles and it is more difficult to accurately describe their error covariance, so it is 

more difficult for the non-linear humidity retrievals to converge on the truth. It is hoped that 

this situation will improve somewhat with the advent of convective-scale NWP models. 

 

The observations in channels sensitive to cloud are limited by representativeness errors, 

which can be calculated dynamically from time-series of observations to tighten up the 

retrievals’ errors in stable conditions. However, this did not change their statistics on average. 

 

Although the retrievals rely on the correlations in the background error covariance to resolve 

the ill-posed nature of the retrieval problem, these correlations make it impossible for a 

misplaced feature in the prior profile to be moved in the vertical. This is inherent in the way 

the 1D-VAR retrievals are defined on a fixed grid. However, the retrieval problem can also be 

defined as minimising the position (height, temperature) of significant points in the profile 

[Berkels et al., 2004]. The positioning of features in the retrieved profile could also be 

improved by the addition of other constraints in the cost function, based on other a priori 

knowledge. However, this cannot be achieved by modifying the first guess alone. For 

example, we could use the height of the maximum signal from a UHF wind profiling radar, 

which is related to the gradient of the refractive index, indicating levels with strong humidity 

changes [Gaffard and Nash, 2006].  These concepts are discussed further in Chapter 7. 
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Chapter 5 Neural Network Retrievals 
This chapter investigates the application of artificial neural networks to retrieve temperature 

and humidity profiles from ground-based microwave radiometers. This is a fundamentally 

different technique from the variational methods discussed in the previous chapter and offers 

different advantages and disadvantages which are reviewed in this chapter, along with a 

statistical assessment of the neural network developed by Solheim et al. [1996]. 

 

5.1 Introduction to Neural Networks 
The neural network is essentially a nonlinear statistical regression between a set of predictors 

– in this case the observation vector, y – and a set of predictands – in this case profiles of 

atmospheric temperature, humidity and liquid water content, x. This regression of x=ƒ(y) is 

implemented as a series of empirical nonlinear functions, g(y) in any number of layers of 

hidden nodes or neurons used to combine each of the predictors (input nodes) to each of the 

predictands (output nodes), as illustrated in Figure 5-1. For example, ƒ(y) can be a nonlinear 

weighted sum of the form  

 ( ) ( )i i
i

f K w g⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑y y  (5.1) 

where K is a pre-defined function, such as a hyperbolic tangent. 

 

 

Figure 5-1 Schematic diagram showing a Neural Network with 1 hidden layer fully 
connected between a set of input nodes, y, and output nodes, x. 

 

The coefficients of these functions are determined a priori by a process of training using a 

separate data set of input and output nodes. There is some debate about whether neural 

networks outperform other regression based methods – for example, see [Solheim et al., 
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1996], [Rose et al, 2005], [Cimini et al., 2006b]. However, using neural networks has the 

advantage of requiring none of theoretical assumptions such as only moderate nonlinearity or 

the Gaussian error character of the variables. 

 

In this case, the neural network was trained using a data set of radiosonde profiles and 

observations simulated from them. This data set provides the a priori background data in the 

form of a climatological ensemble used to resolve the ill-posed nature of the retrievals. This is 

another key difference from the variational method of the previous chapter, which took their 

background data from an NWP model. The fact that a radiative transfer model is used to 

generate the synthetic observations in the training data set means these neural network 

retrievals are also physical. 

 

Although the neural network is slow to train, it is very fast to perform retrievals. And since 

these retrievals are independent of NWP model data, they can be used to provide 

independent validation of forecasts or be deployed in stand-alone nowcasting applications 

where fast response is more important than absolute accuracy of the retrieved profiles. 

However, as with any nonlinear regression, neural networks are prone to generate erroneous 

results if applied outside the range of the training data set. This potentially serious problem is 

discussed in §5.3.4. 

 

5.2 Training Neural Networks 
Radiometrics [2001] implemented the neural network retrievals using the Stuttgart Neural 

Network Simulator [Zell et al., 1993] to construct a standard feed forward network with one 

hidden layer and full connection between this and the input and output layers. The coefficients 

of the hidden nodes were trained using a standard back propagation method. This is a very 

computationally expensive process, but it only need be performed once for each neural 

network. 

 

Separate neural networks have been trained using microwave radiometer observations in the 

zenith view and a range of elevation angles. In both configurations the radiometer data is 

combined with observations of ambient pressure, temperature, humidity and the brightness 

temperature from a zenith viewing infrared radiometer. The results of these are described in 

the following sections. 

5.2.1 State space definition for neural network 
The neural network is trained to output profiles of temperature [K], absolute humidity (water 

vapour density) [g/m3] and liquid water content [g/m3], as well as the integrated amounts of 

water vapour [kg/m2] and liquid water [g/m2]. The measurements of surface temperature, 

relative humidity and pressure are assumed to be accurate and are fed directly through the 
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neural network to provide the values at the lowest level of the profile. Although the absolute 

humidity is not commonly used in meteorological applications, it is the variable used in many 

absorption models and can be readily converted to relative humidity or specific humidity, 

which has the advantage of being conserved in adiabatic ascent/descent. 

 

The profiles are output at discrete levels every 100 m up to 1 km, then every 250 m from 1 to 

10 km. Although the number of independent measurements is less than the 47 levels output 

(as will be shown in Chapter 7), this sampling ensures the retrieved profiles can accurately 

represented on fixed levels. 

5.2.2 Training data sets 
The first neural network to be tested here was trained on a data set of 10 years of radiosonde 

profiles from Camborne (UK). During some of this period radiosondes were launched 4 times 

daily (at 0515, 1115, 1715 and 2315 UTC). The launch frequency later reduced to 3 and then 

2 times daily. This resulted in approximately 10,000 soundings being used in the training data 

set. The profiles had been discretised at the standard and significant levels of the WMO 

TEMP code (see §2.6.3). Other versions of this neural network have been trained using high 

resolution (~10 m) radiosonde profiles for elevation scanning retrievals, which are discussed 

later in this chapter. 

 

The radiosondes provided pressure, temperature and humidity profiles. Liquid water cloud 

was added synthetically to the profiles, based on a simple humidity threshold up to a 

maximum column amount of 1500 g/m2 [Randolph Ware, personal communication, 21/10/03]. 

Higher values will be outside the range of the training data set and liable to produce retrieval 

errors. The profiles were then input to a radiative transfer model to synthesise the  

observations of a ground-based microwave radiometer at the elevation angles and centre 

frequencies of the channels used in the retrieval. The use of centre frequency introduces 

small biases compared to observations over a finite bandwidth as described in §2.5.2. This 

model used the water vapour absorption from Liebe and Layton [1987] and the oxygen 

absorption from Rosenkranz [1993]. The input and output nodes corresponding to the surface 

temperature and humidity are directly connected. The brightness temperature of the infrared 

radiometer, Tir, was calculated simply as the temperature at the lowest level of the profile with 

cloud.  

 

The simulated observations in the training data set were duplicated 4 times each with 

uncorrelated Gaussian noise added to simulated observations [Solheim et al., 1998], with 

standard deviations of 0.5 K for microwave brightness temperatures, 0.5 K for surface 

temperature, 1% for RH, 3 hPa for pressure, and 2 K for the Tir. This extends the training data 

set slightly and reduces the sensitivity of the network to noise in the data and should 

represent all the errors affecting the observations. However, the analysis presented in 
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§4.4.1.4 shows these figures underestimate the expected variance in the channels sensitive 

to water vapour and cloud, due to representativeness errors when used for NWP models with 

~10 km grids, and overestimate expected variance in the high frequency channels (54-

59 GHz) near the centre oxygen absorption band, which are dominated by radiometric noise. 

5.2.3 Training statistics 

Figure 5-2 show the mean profiles of temperature, vapour density and liquid water content of 

the 10 year data set of radiosondes from Camborne used to train the neural network. The 

mean profile is featureless, showing that inversions do not form predominately at any one 

level during over the annual cycle (unlike wintertime in Payerne in the case of the TUC data 

set). It approaches the dry adiabatic lapse rate at high levels, and the saturated adiabatic 

lapse rate in the 1 km near the surface.  

 

Also shown in Figure 5-2 are the standard deviation of the training data set and the r.m.s. 

error of the neural network retrievals applied to this data set. This shows that the retrievals 

are expected to improve dramatically on the background information available from 

climatology for temperature, reducing its uncertainty near the surface from 3.75 K to 0.4 K 

and from 5.4 K to 1.1 K at 2 km. The humidity retrievals reduce the relative uncertainty from 

26% to 4% at the surface and from 51% to 21% at 2 km. It is also clear that the error 

characteristics of the cloud profile are not Gaussian, as their standard deviation is greater 

than the average value. However, the retrievals still improve the cloud in the background by a 

factor of ~2 below ~3 km. 

 

This performance is comparable with the analysis error covariance of the 1D-VAR retrievals, 

shown in Figure 4-10 and Figure 4-11 up to ~2 km. However, at higher levels the 1D-VAR 

retrievals are expected to be more accurate than the neural network because they rely more 

heavily on the NWP background here, which is more accurate than the climatological one 

used by the neural network. 



 107

220 230 240 250 260 270 280 290
0

2

4

6

8

10

Temp (K)

H
ei

gh
t (

km
)

Average

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Temp (K)

Te
m

p 
(k

m
)

Stdev
RMS

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Vapor (g/m3)

H
ei

gh
t (

km
)

Average
Stdev
RMS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

Liquid (g/m3)

H
ei

gh
t (

km
)

Average
Stdev
RMS

 

Figure 5-2 Average and standard deviation (Stdev) of 10 year radiosondes from 
Camborne used to train the neural network and r.m.s. error (RMS) of its retrievals. 

[Courtesy of Radiometrics] 
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5.3 Neural Network Retrievals from Zenith Observations 
Originally the neural network only retrieved profiles from the zenith view of the Radiometrics 

TP/WVP-3000. These retrievals have been validated against radiosondes, launched from 

Camborne during the radiometer’s first year of operation there. The radiometer retrieval 

closest to the time of launch of each radiosonde was compared with its temperature and 

humidity profile. In all cases, this resulted in a time difference of less than 9 minutes. This 

approach was chosen to provide the best match in time between the radiometer retrievals and 

the radiosondes’ measurements of the lowest part of the profile, where most of the 

radiometer’s information is concentrated.  

 

Cases were rejected when the radiometer’s rain flag was set, or when the retrieved Integrated 

Liquid Water (ILW) was greater than 1000 g/m2, on the basis of empirical evidence that these 

conditions were liable to produce rain (§6.5). This filtering left 703 cases over the period 

20/2/2002 – 18/3/2003, for which the statistics are shown in Figure 5-3 for temperature and 

vapour density profiles. The humidity statistics are also shown after conversion to dew point 

temperature and relative humidity, assuming no errors in the temperature profile. 

 

 

Figure 5-3 Statistics of neural net retrievals at Camborne 20/2/2002-18/3/2003.  
Black solid lines show Standard Deviation of retrieved-radiosonde profiles,  

Black dashed lines show mean bias of retrieved-radiosonde profiles, 
Blue dot-dash lines show r.m.s. residuals of neural network training. 703 cases. 
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Figure 5-3 shows the standard deviation of the difference between the temperature profiles 

retrieved by the neural network and measured by the radiosonde increases from ~0.6 K just 

above the surface to ~1.5 K by 3.3 km. However, their variance is larger at the surface, and 

also ~1.0-1.5 km, corresponding to typical levels of subsidence inversions frequently found in 

anticyclonic conditions. Investigation showed the errors are non-Gaussian at this level due to 

the retrievals’ poor resolution of these strong inversions. For vapour density the SD increases 

from ~0.5 g/m3 near the surface to ~1.1 g/m3 between 1-2 km, before decreasing again at 

higher levels as the average absolute humidity decreases in the colder air. 

 

These results are substantially higher than the r.m.s. residuals of the training data set. This is 

partly due to the optimistic assumptions made about the observation error in the low 

frequency channels when training the neural network, but can also be caused by errors in the 

radiosondes’ measurements associated with instrumental noise and representativeness. The 

later accounts for the atmospheric variability between the atmosphere seen by the radiometer 

and the radiosondes. 

5.3.1 Bias in neural network retrievals 
Where there are consistent biases between the profiles retrieved by the neural network and 

those measured by co-located radiosondes, this suggests an inconsistency between the 

radiosondes, the radiometer, the radiative transfer model or the retrievals themselves. Whilst 

consistent biases may be corrected empirically, it is beneficial to investigate their causes to 

understand the mechanisms responsible and, possibly, improve them. 

 

Figure 5-3 also shows the mean bias in the temperature and humidity profiles retrieved by the 

neural network relative to the radiosondes. The neural network temperature profiles have a 

consistent and highly significant positive bias, peaking at +1.4 K at 400 m. (The uncertainty on 

the bias can be estimated as SD/√n ~0.02 K near the surface to 0.12 K by 5 km, where 

n=703.) This bias may be largely explained by a bias in the calibration, affecting the highest 

frequency channels (55-59 GHz) (§3.4.2), which give most of the information here. This bias 

reduces to zero by 2.5 km and becomes significantly negative at higher levels. However, the 

temperature bias at higher levels was found to depend on the atmospheric conditions – it was 

larger in cold, dry conditions. This is believed to be related to the bias found in comparison of 

observed and forward-modelled brightness temperatures of the 51-53 GHz channels in 

§3.4.2.  

 

There is also a significant positive bias in the humidity retrievals between 1-5 km. Again, this 

was found to depend on the atmospheric situation – larger in warm, humid conditions – as did 

the observed brightness temperatures compared to forward-modelled radiosondes in §3.4.2. 

This is believed to be related to the known dry bias of the Vaisala RS80 radiosondes used in 

this study [Nash et al., 1995] – see also §5.5. 
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If the retrievals are considered as weighted averages of a priori background data and the 

radiometer’s observations, they will be biased if the climatological background is biased with 

respect to the average profile of a given ensemble. When considering the statistics of a 

experiment lasting one season or less, this can introduce significant bias with respect to the 

truth, (xa-xt), for which the magnitude can be estimated as [Eyre, 1987]: 

 ( ) ( ) ( )= ⋅a t b tx - x I - MRM x - x  (5.2) 

where ( )b tx - x  is the mean bias of the background state with respect to the truth, I is the 

identity matrix and MRM=KH, is the Model Resolution Matrix [Rabier et al., 2002], where 

K=AHTR-1 is the Kalman gain matrix, which can be interpreted as a generalised inverse of H.  

 

MRM has been calculated by perturbing each element of a reference profile in turn, 

calculating a synthetic observation, y, and using this in the neural network retrieval to retrieve 

a perturbed profile, x´. This was evaluated for the average profile retrieved from radiometer 

observations and measured by radiosondes from the winter-time TUC campaign (§1.5), 

where a neural network was specifically trained on a full year’s high-resolution radiosonde 

data from Payerne. This results in a positive bias expected in the lowest 1 km of the retrieved 

profiles, peaking at ~1 K near 500 m. This may explain part of the positive bias of ~1.5 K at 

500 m found in the temperature profiles retrieved during this campaign [Hewison et al., 2004]. 

This is not expected to produce significant bias in the results shown in Figure 5-3 because the 

data set covered a full year. 

 

It is also possible that a bias in the retrievals can be introduced as a result of applying their 

finite vertical resolution to retrieve a nonlinear feature, such as a consistent inversion at the 

top of the boundary layer. However, this is unlikely to be a significant factor in this data set – 

these inversions are typically rather small features at Camborne and the height of the top of 

boundary layer varies dramatically over 1 year (or even 1 day). Even in the winter-time 

climate of Payerne, Switzerland the neural network showed no sign of a dipole in the bias that 

might be expected from a poorly resolved consistent inversion [Hewison et al., 2004]. 

5.3.1.1 Bias correction to brightness temperatures 

In the assimilation of data into NWP it is common practice to correct observations for the 

mean bias found with respect to the forward-modelled background (§2.7.5). This approach 

can also be adopted to profiles retrieved by the neural network – the mean bias found in the 

comparison of observations to a forward-modelled reference can be subtracted from the 

observations prior to their input into the neural network. This has been applied to the 

radiometer’s brightness temperatures by comparison with forward-modelled radiosondes in 

clear air [Hewison et al., 2006] and also to its surface observations using reference 

observations from an operational Stevenson screen. 
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The bias in the high frequency channels (55-59 GHz) of ~1 K was larger than expected as the 

brightness temperature of these channels is typically quite close to that of the ambient black 

body reference target. However, it was confirmed independently by comparison with another 

radiometer [Rose et al., 2005] and has since been corrected in the radiometer’s control 

software. Prior to applying this correction, the statistics of the profiles retrieved during TUC 

closely resembled those shown in Figure 5-3 [Hewison et al., 2004]. The bias corrections 

resulted in the ~+1.5 K  bias in the retrieved temperature near 500 m being reduced and 

actually becoming slightly negative. The negative temperature bias above 2 km is also much 

reduced. However, the humidity profiles and IWV are largely unaffected by the small 

corrections applied to the channels in the water vapour band.  

5.3.2 Neural network’s sensitivity to noise 
A retrieval system can be designed to minimise sensitivity to noise or to optimise vertical 

resolution by effectively changing the correlations in the background error covariance matrix 

[Rodgers, 2000]. The sensitivity of the neural network to radiometric noise can be investigated 

by constructing an ensemble of randomly perturbed observations and examining the variance 

of the profiles retrieved from them. When an observation was perturbed by uncorrelated 

Gaussian noise equivalent to the radiometric noise, the standard deviation of the temperature 

profiles was ~0.2 K and ~1% for the humidity profile. These results are comparable to those 

of a similar experiment with the 1D-VAR retrievals (§4.9.7) and much smaller than the 

expected variance of the retrievals. This shows that the neural network does not amplify 

observation noise and that it appears to follow the minimum variance solution as the 

variational method.  

 

It is also useful to examine the impact of averaging retrieved profiles prior to comparison with 

radiosondes. The comparison with radiosondes shown in Figure 5-3 was repeated using the 

average of all profiles retrieved from unflagged observations within 30 minutes of the 

radiosonde launch time. This increased the number of cases available. The results in Figure 

5-4 show that averaging retrieved profiles reduces the variance of the temperature and 

humidity above ~1 km compared to the radiosondes. Below 1 km, the averaged temperature 

profile has slightly higher variance than the instantaneous profiles. This confirms that some of 

the excess variance in the validation of instantaneous retrievals with radiosondes compared 

to expectations from the statistics of the training data set was indeed due to underestimated 

observation errors in the form of modelling and representativeness. However, the retrievals 

still have greater variance from the radiosondes than the variance of the training data set, as 

this comparison includes contributions from the radiosonde errors. 
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Figure 5-4 Statistics of neural net retrievals at Camborne 20/2/2002-18/3/2003. 
Retrieved profiles averaged within 30 min of radiosonde launch time.  

Black solid lines show Standard Deviation of retrieved-radiosonde profiles,  
Black dashed lines show mean bias of retrieved-radiosonde profiles, 

Blue dot-dash lines show r.m.s. residuals of neural network training. 1038 cases. 

 

Later in this study (§7.1) the sensitivity of the retrieval accuracy to observation errors are 

investigated by averaging the observations prior to using them in the retrievals. 

5.3.3 Linearity of neural network retrievals 
The characteristics of an ensemble of neural network retrievals can also provide insight on 

the linearity of the retrieval problem. The mean temperature profile retrieved by the neural 

network over a period of 100 days at Camborne was found to match the temperature profile 

retrieved from the mean of all unflagged observations over this period with a SD of 0.27 K. 

This implies the temperature retrieval process is approximately linear. However, this is not the 

case for the humidity profiles, where there was an mean difference of 0.12 g/m3 and a SD of 

0.15 g/m3 (8% of the mean surface humidity), which is a significant fraction of the expected 

retrieval errors. 

 

Different conclusions could be drawn from applying the same analysis to the data from 

Payerne during TUC. The difference between the average profile retrieved by its neural 

network and that retrieved from the average observations had a SD of 2.3 K in temperature 

and 0.75 g/m3 (33%) in humidity. These are larger than the expected SD of the retrievals, 

showing that both temperature and humidity retrievals have significant nonlinearity for this 

data set because of its frequent, strong inversions.  

5.3.4 Application outside range of training data set 

As with all regression methods, neural networks are prone to amplify errors when applied 

outside the range of the training data set. However, this can be more serious in the case of 

neural networks because of their capability of producing a nonlinear response to inputs. For 
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this reason great care should be taken to ensure the training data set is not only 

representative of the climate of the radiometer’s operating site, but also that it encompasses 

the full range of conditions ever likely to be observed at that site. However, extreme events 

will always be problematic with neural networks. 

 

This turns out to be difficult to achieve in practice when using a set of radiosonde profiles to 

train the neural network. All the operational radiosonde stations in the UK have until recently 

been at coastal sites. Together with the limited sampling available from radiosondes launched 

at only midday and midnight, this means the extremes of the diurnal cycle experienced at 

inland sites are inadequately represented by this method. Furthermore, it is not easy to 

estimate likelihood of extending beyond the range of the training data set statistically as the 

extremes of the distribution are unlikely to be normally distributed. 

 

The neural network trained on Camborne radiosondes was applied to radiometer 

observations taken from Linkenholt, an inland site, during CSIP (§1.5) in summer 2005. The 

1.5 m air temperature here often exceeded 25 °C, which is the highest value in the training 

data set. When the retrievals from this neural network were validated against co-located 

radiosondes, a strong negative bias (-1.6 g/m3) was found in the humidity profile at ~1 km 

[Hewison and Gaffard, 2006]. This bias was found to be stronger when surface temperatures 

were higher and is indicative of the neural network being applied outside the range of its 

training data set. The magnitude of this bias was much reduced (to -0.5 g/m3) by repeating 

the retrievals using the coefficients for another version of the neural network trained using 

radiosonde data from Lindenberg, Germany. This training data set includes more extreme 

cases because of the continental climate of Lindenberg, compared to the maritime one of 

Camborne. The temperature and humidity profiles retrieved using this neural network were 

better than those from the Camborne neural network to the radiosondes – both in terms of 

bias and standard deviation [Hewison and Gaffard, 2006]. This highlights the need to ensure 

the data set used for training the neural network covers the full expected range of the 

observations, allowing for possible future climate change. This may be achieved by including 

profiles from other radiosonde stations, artificially extending the training data set, or by 

normalising its inputs and scaling the neural network so these only fall in the range 0.10-0.90 

following Churnside et al. [1994]. However, as the coefficients of the neural network become 

less site-specific, there is a danger that its retrievals will be biased if the background is no 

longer representative of the site’s climate.  

 

It would also be possible to train the neural network using a data set of profiles from an NWP 

model. This has the advantage of including cloud properties and producing a full diurnal cycle 

and should be more representative of the climate of each station, assuming this is well 

represented in the model. This can be validated using other observations, such as 

radiosondes, or those available from CloudNet [Hogan and O’Connor, 2006]. 
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5.3.4.1 Altitude of training data set 

The altitude of the station used to supply the training data set should be consistent with that of 

the observations as emission near the water vapour line at ~22 GHz and in the wings of the 

oxygen band (e.g. 51-53 GHz) is sensitive to pressure. The altitude of Lindenberg is 112 m 

above sea level. Although this is not perfect for application at Linkenholt (altitude 185 m), it is 

marginally better than Camborne (altitude 88 m), and did not prove to be problematic. 

However, this was another motivation for training a new neural network specifically for 

Payerne (altitude 491 m), as those trained for lower altitude stations were expected to 

produce serious errors. 

 

5.4 Elevation Scanning in Neural Network Retrievals 
To improve the vertical resolution of the retrievals needs extra observations. Viewing the 

atmosphere at lower elevation angles increases the channels’ sensitivity because of the extra 

path length. This effect alone has been used to retrieve temperature profiles in the lowest 

600 m of the atmosphere using a simple radiometer with a single channel near the centre of 

the 60 GHz oxygen band observing a range of elevation angles [Troitsky et al., 1993]. This 

technique can also be combined with observations at a range of frequency channels and has 

the potential to improve the vertical resolution of their retrievals under the assumption that the 

atmosphere is horizontally homogeneous. During the course of this study, elevation scanning 

has been included in a new neural network, which can be applied to data from the 

Radiometrics TP/WVP-3000.  

 

Figure 5-5 Normalised Jacobians showing sensitivity of Radiometrics TP/WVP-3000 

channels viewing at zenith angles, θ=0° (black), 60° (green) and 75.5° (blue) for 

temperature (left) and humidity (right). 

 

The sensitivity of the radiometer’s channels viewing different elevation angles to temperature 

and humidity changes at different levels are shown by their normalised Jacobians, plotted in 

Figure 5-5. These differ from the Jacobians in Figure 4-9, as they have been divided by the 
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integrated Jacobian for each channel to show the relative sensitivities. This shows that the 

highest frequency channels become proportionally more sensitive to temperature changes 

near the surface at lower elevation angles. However, the normalised humidity Jacobians have 

the same shape for all elevation angles, showing there is no extra information available, only 

a reduction in noise. 

 

A new neural network was developed with inputs corresponding to the 12 brightness 

temperatures measured at 4 elevation angles (15, 20, 30 and 90°) plus the surface pressure, 

temperature and humidity and the infrared brightness temperature, measured at zenith. Two 

training data sets used high-resolution radiosondes from Camborne and Payerne, 

respectively, sampled every 2 s (equivalent to ~10 m) to improve the representation of small 

features near the surface. 

 

These neural networks were applied to observations sequentially sampling 7 elevation 

angles, symmetric about zenith. Observations in opposite angles were averaged before being 

input to the neural network. Although this observing sequence can take 60-300 s depending 

on the instrument’s configuration, it has the advantages of cancelling out small angular 

misalignments and allowing better quality control as described below. The observation errors 

are approximately the same as would be achieved using a single sided scan with double the 

integration times, as the only difference is the overhead required to move the scan mirror, 

which is small (~1 s). 

5.4.1 Asymmetry in elevation scans 
The assumption of horizontal homogeneity can be checked by comparing radiances observed 

in symmetric views. These were found to differ by less than the observation error in more than 

90% of cases. The remainder mostly correspond to cases with broken cloud. This is a 

fundamental restriction to the application of the elevation scanning technique to channels at 

frequencies lower than ~54 GHz, which are sensitive to cloud. Another quality control check, 

based on a threshold of the standard deviation of the observations in the 30 GHz channel 

mapped back to the equivalent zenith brightness temperature was developed by Cimini et al. 

[2006b]. Retrievals using elevation scanning should not be attempted for cases failing these 

quality control checks. However, these scans are still of potential interest as they can provide 

information on the horizontal gradient of temperature and/or humidity, although asymmetries 

are most often caused by inhomogeneous cloud fields. 

 

It was found that brightness temperatures measured in opposite elevation angles differed by 

more than √2 times the corresponding term of the observation error covariance, √diag(R), on 

2-11% of scans (6% on average). This is less than would be expected if the errors between 

different views were independent (16%) because there is a significant correlation between the 

components associated with the forward model, calibration noise and representativeness. 
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This shows the potential benefit of elevation scanning retrievals needs to be assessed using 

observation error covariances including all elevation angles being considered. These can be 

evaluated by calculating the covariance of the full observation vector including multiple views, 

as described in §7.1.3. 

5.4.2 Results of elevation scanning retrievals 

The Radiometrics TP/WVP-3000 was configured to scan seven elevation angles and its 

internal black body reference target in a 300 s observing sequence during most of the TUC 

experiment in Payerne, Switzerland during the winter of 2003/04. These observations were 

bias corrected, as described in §5.3.1.1, and input into two versions of the neural network –

one using zenith views only and another using full elevation scans. The profiles retrieved by 

these neural networks from cases meeting the above homogeneity condition were compared 

with those from 165 co-located radiosondes and the statistics shown in Figure 5-6. Although 

all the profiles retrieved by the neural networks within 30 minutes of the launch time of each 

radiosonde were averaged, this was found to have no significant impact on the resulting 

statistics. This contrasts with the case of the Camborne data set, and shows impact of 

atmospheric variability was much less during the TUC experiment because of the more stable 

conditions. 

 

Figure 5-6 Statistics of neural net retrievals at Payerne  6/11/03-13/2/04, 165 cases. 
Solid lines show standard deviation of retrieved-radiosonde profiles.  

Dashed lines show mean bias of retrieved-radiosonde profiles. 
Retrievals from zenith views only (black) and elevation scans (green). 

 

Figure 5-6 shows the standard deviation of the temperature profiles retrieved from zenith 

observations are similar to those found at Camborne in Figure 5-4, while the humidity profiles 

have less variance than at Camborne, because of the lower absolute humidity found during 

TUC. The bias of the zenith retrievals is also smaller than found at Camborne, both for 

temperature – because of the bias corrections applied to the observations, and for humidity – 

because of the lower absolute humidity. However, the basic pattern of a negative temperature 

Zenith Only 

Elevation Scan 

Bias 
SD 

Bias 

SD 
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bias above 2 km, and a positive humidity bias in mid levels remains the same, which suggests 

this may be due to a residual inconsistency between the forward model and the observations.  

 

The retrievals from elevation scans only reduced the variance of the temperature profiles 

slightly in the lowest 1 km. At higher levels, and throughout most of the humidity profile, the 

elevation scan retrievals produced worse results than the retrievals using only zenith views, 

both in terms of variance and bias. This was not expected. If nothing else, these retrievals use 

more observations, so the noise on them should have reduced by a corresponding factor. 

However, the validation of these retrievals has already been shown not to be noise limited.  

This may point to an error in the retrieval process due to the lack of correlation in the 

observation error used to train the neural network. It could also be explained by observation 

errors, described below.  

5.4.3 Technical limitations of elevation scans 

In addition to the assumption of horizontal homogeneity, which was checked by testing the 

symmetry of observations at elevation angles on opposite sides of zenith, other factors may 

degrade observations at low elevation angles, similar to those influencing the tip curve 

calibrations (§3.3.4). Microwave radiometers do not measure radiation in infinitesimal beams, 

but have a finite beamwidth, limited by diffraction in the optical components of the antenna. 

Their response to emission over a range of angles becomes an important factor in using 

observations in the optically thin channels of the water vapour band at low elevation angles, 

where the scene changes view rapidly with angle. This effect can be accounted for by using 

effective zenith angles slightly higher than their true values, following Han and Westwater 

[2000]. However, this correction is not currently performed as part of the elevation scanning 

neural network. 

 

Furthermore, the radiometer’s field of view is not purely Gaussian and has some sensitivity to 

radiation emitted outside the main beam of the antenna. At low elevation angles, this results 

in sensitivity to emission from the ground. This is more likely to be problematic in the lowest 

frequency channels used for humidity profiling, as these have the widest beams in the near 

field, which are more easily truncated by components of the antenna’s optics. Land surfaces 

typically have an emissivity of ~0.95 at microwave frequencies [Hewison, 1999], so will have a 

typical brightness temperature of ~285 K. Hence, the contrast between the brightness 

temperature of the sky and the ground is also greatest in these channels. Together with the 

lack of extra information available from the 20-30 GHz water vapour channels from multiple 

elevation angles, these factors severely limit the application of the elevation scan technique 

for humidity profiling. 
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5.5 Integrated Water Vapour Retrievals by Neural Network 
In addition to humidity profiles, the neural network retrieves the column Integrated Water 

Vapour (IWV) . This was found to be consistent with the vapour density profile integrated over 

0-10 km (within ±0.8 kg/m2) as expected because there is very little water vapour at higher 

levels. Data from high precision GPS (Global Positioning System) receivers at fixed positions 

can also be used to estimate IWV by measuring the phase delay of signals transmitted from 

multiple GPS satellites [Bevis et al., 1992]. These IWV estimates have been compared to 

those calculated from radiosonde profiles.  

 

Figure 5-7 shows the difference between the IWV measured by radiosondes and retrieved by 

the neural network using radiometer observations nearest the launch time over its first year of 

operations at Camborne. The radiometer retrievals gave ~8% higher IWV than the Vaisala 

RS80 radiosondes, which have been widely reported to have a dry bias [e.g. Nash et al., 

1995, Cimini et al., 2003a].  This figure also shows that the agreement between the retrievals 

and the radiosondes is better in clear conditions, because the channels that are used to 

retrieve IWV are also sensitive to the variability of cloud liquid water. During most of this 

period, the radiometer sampled only once every 14 minutes, which will be shown to limit the 

accuracy of the comparison.  

 

Figure 5-7 Difference between IWV retrieved using neural network and calculated from 
radiosonde profiles at Camborne 20/2/02-18/3/03. Solid line shows best fit by linear 
regression. Black crosses are all cases, Blue crosses are the subset of clear cases. 

All

Clear
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Table 5-1 summarises the results of various comparisons between IWV retrieved from 

microwave radiometers, measured by radiosondes and GPS systems during this study. 

These results are typical of those from other experiments, some of which are shown in the 

last two rows. The initial results from Camborne shown in Figure 5-7 have the largest 

standard deviations as they cover a full year of operations, and have the slowest observation 

cycle, resulting in the largest time differences between radiometer and radiosonde 

observations. Later studies showed the radiometer retrievals could identify a diurnal cycle in 

the dry bias of the radiosondes, and that this was larger for those using Vaisala RS92 sensors 

due to inadequate correction for solar heating of the sensors [Smout et al., 2005]. There was 

no significant diurnal changes in the difference between the radiometer and GPS, but their 

variance was much larger in day-time, due to the greater variability of IWV. Typically, the 

radiometer retrievals had lower variance than GPS when compared to radiosondes (not 

shown). These examples show how robust IWV retrievals from microwave radiometers can 

be used to validate, and, ultimately, improve humidity observations from other systems. 

 

Table 5-1 Summary of Results of IWV comparisons between Microwave Radiometers, 
Radiosonde and GPS 

Radiometer -

Radiosonde 

kg/m2 

Radiometer-

GPS  

kg/m2 

Reference 

Bias S.D. Bias S.D. 

Ave 

IWV 

kg/m2 

Sonde 

Type 

Retrieval Data set 

Gaffard and 

Hewison [2003] 

+1.4 

+1.1 

1.2 

0.9 

-0.3 1.4 16.5 RS80 Camborne NN 

(clear only) 

Camborne 

2002 

Smout et al. 

[2005] 

+0.4 

+0.4 

1.0 

0.9 

-1.2 1.4 22.3 RS80 

RS92 

Camborne NN Camborne 

May 04 

 +0.4 

-0.1 

0.7 

0.6 

-1.2 

-1.1 

1.6

0.8 

Day 

Night 

RS80 Camborne NN 

 

 

 +1.5 

-0.4 

0.9 

0.6 

  Day 

Night 

RS92 Camborne NN 

 

 

Martin et al. 

[2006] 

+0.1 0.9 +0.6 0.7 10.2 Srs400 Payerne NN Payerne, 

Winter 03/04 

Hewison and 

Gaffard [2006] 

+0.9 

+0.4 

0.6 

0.7 

   RS92 Camborne NN 

Lindenberg NN 

CSIP (UK) 

Summer 05 

Mattioli et al. 

[2005] 

+0.1 0.7 +0.6 0.6 ~14 RS90 2 channel 

regression (ave) 

ARM SGP, 

Spring 03 

Van Baelen et 

al., [2005] 

+0.7 

+0.4  

1.3 

1.4 

+1.0

+0.2 

2.7

2.7 

Day 

Night 

RS90 Toulouse NN Toulouse, 

Sept 02 
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5.5.1 Atmospheric variability of IWV 

To understand the differences between the results of IWV intercomparisons it is useful to 

consider its spatial and temporal variability. This is calculated in this section following the 

same approach used to estimate representativeness errors in §4.4.1.3.  

 

Treuhaft and Lanyi [1987] constructed a statistical model of water vapour fluctuations by 

approximating the spatial structure of refractivity fluctuations by Kolmogorov turbulence theory 

and assuming temporal fluctuations are caused by spatial patterns advected by wind. This is 

known as the persistence of frozen spatial structure. They expressed this model in terms of 

spatial and temporal structure functions (§3.5.4) of the Wet Delay, which is proportional to 

IWV. For time scales, τ << h / v, where h is the scale height of the wet troposphere and v is 

the typical wind speed at this height, they found the Time Structure Functions, TSF ∝ τ5/3, 

whilst on longer times, τ >> h / v, TSF ∝ τ2/3. At Camborne, the annual mean h=0.9 km, where 

v=11.2 m/s, giving the scale break at τ ~ 80 s. They describe the two scales as being 

“consistent with the intuitive picture that many small irregularities contribute to the short 

distance structure, while a small number of larger irregularities dominate the long distance 

structure”. Their model is compared to the observed TSF of IWV in Figure 5-8.  

 

 

 

Figure 5-8 Time Structure Functions of IWV (kg/m2) retrieved from Radiometrics 
TP/WVP-3000 (blue) and WVR1100 (green) during Cardington trial of Spring 2003.   

Lines show theoretic slopes of 2/3 and 5/3, and 0 (instrument noise). 
 

Slope = 5/3 

Slope = 2/3 

Slope = 0 
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Figure 5-8 shows close agreement between the Time Structure Function (TSF) of IWV 

retrieved from two co-located radiometers, on timescales of ~2 minutes to ~3 hours. The 

variability of IWV continues to decrease down to timescales of ~10 s, although the WVR1100 

radiometer shows larger variance in the region of ~80 s, corresponding to the typical scale 

break for Camborne. The data set used to generate this figure covered 22 days including 

several convective days, but the TSF changed vastly from day-to-day and is typically larger in 

daytime than at night. The form of the structure functions matches the theoretical predicted 

slopes of Treuhaft and Lanyi [1987]. However, this could be more simply interpreted as 

humidity fluctuations being driven by diurnal cycles and convective eddies, causing local 

maxima in the TSF on time scales of τ~43200 s and ~100s respectively.  

 

The horizontal line in Figure 5-8 indicates the white noise spectrum associated with 

WVR1100 instrument noise. This is equivalent to an r.m.s. uncertainty in the retrieved IWV of 

0.09 kg/m2, which is consistent with the expected performance of a simple bilinear regression 

retrieval (1.1), based on a radiometric noise, ΔTmin=0.1 K. Structure in the IWV is evident 

above the instrument noise level on time scales longer than ~30 s. If the instrument noise 

were reduced, it would be improve the sensitivity to IWV on shorter time scales. 

 
Figure 5-8 also shows that increasing the time separation between IWV observations, 

increases the expected variance between them, due to atmospheric variability. For example, 

if observations are separated by 15 minutes, such as the typical interval between GPS and 

radiosonde observations, atmospheric variability will increase the standard deviation of the 

IWV difference by 0.35 kg/m2. This is equivalent to a horizontal separation between 

observations of ~10 km, assuming the advection of frozen spatial structures. This explains a 

lot of the differences between the statistics shown in Table 5-1. 

5.5.2 Comparing IWV from radiometer and GPS in precipitation 

Because GPS measurements of IWV are not expected to be substantially biased in rain rates 

less than ~50 mm/hr [Solheim et al., 1999], they can be compared with those from microwave 

radiometers to investigate the effects of rain on the radiometer’s performance. The difference 

between these estimates of IWV have been compared with the precipitation rate during TUC 

in Figure 5-9, which shows the radiometer tends to overestimate IWV in the presence of 

precipitation. This bias increases with rain rate and becomes statistically significant at 

precipitation rates of >1 mm/hr.  
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Figure 5-9 Bias in IWV retrieved with Radiometrics TP/WVP-3000 neural network 
relative to GPS compared to precipitation rate for all wet hours during TUC. Horizontal 
lines show mean and standard deviation of the difference in IWV during dry conditions. 

Sloping line indicates linear regression of observations. 

 

5.6 Integrated Liquid Water retrievals by Neural Network 
Figure 1-1 shows that liquid water emission follows a broad continuum, which increases with 

frequency and dominates the signal in the 30-50 GHz region. So microwave radiometer 

channels here are sensitive to the column Integrated Liquid Water (ILW), as described in 

§1.3.1. Although the neural network outputs profiles of liquid water content, there is very little 

information on its vertical distribution – this is only provided by the cloud base information 

available from the infrared radiometer’s observations and through its correlation with humidity.  

 

Crewell and Löhnert [2003] analysed the expected performance of ILW retrievals from 

microwave radiometers alone and in combination with other instruments. They found a two 

channel microwave radiometer with noise characteristics similar to the Radiometrics TP/WVP-

3000 should retrieve ILW with an r.m.s. accuracy of 35 g/m2. These retrievals were most 

improved by the addition of a 90 GHz channel, which has greater sensitivity to liquid water, 

but adding a 50 GHz channel improved the r.m.s. to 20 g/m2. Further improvements came 

from the inclusion of information on the cloud base height or temperature from a ceilometer or 

infrared radiometer. Their results suggest the neural network should be able to retrieve ILW 

with an accuracy of ~20 g/m2. 

5.6.1 Validation of ILW retrievals and NWP models 

The absence of routine in-situ measurements of cloud liquid water content makes it very 

difficult to validate ILW retrievals. However, they have been validated against aircraft 
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measurements on a campaign basis. For example, Wood and Taylor [2001] found radiometer 

retrievals of ILW closely matched the adiabatic liquid water content for maritime 

stratocumulus cloud, except where drizzle was present. In fact, microwave radiometry is 

widely regarded as providing the most accurate retrievals of ILW [Crewell et al., 2002] and 

used as a reference for other systems and to validate NWP models. For example, van 

Meijgaard and Crewell [2004] described a comparison of liquid water cloud predicted by 

different NWP models with high-resolution ground-based observations. 

 

It is, however, possible to validate the ILW retrievals in clear skies, when there is known to be 

no liquid water. This can be determined independently using a threshold of infrared brightness 

temperature, as described in §4.8.1. Examining the ILW retrieved in clear conditions revealed 

a standard deviation of 17 g/m2 – in line with expectations. However, the ILW retrievals had 

an asymmetric distribution caused by the neural network’s inability to return negative values 

of ILW [Hewison, 2003]. Although these would be unphysical, it is expected that half of all 

clear sky cases should return slightly negative values of ILW because of noise on the 

radiometer observations. Furthermore, the clear sky ILW was found to have a positive bias in 

humid conditions of high IWV because of the infrared radiometer’s sensitivity to emission by 

atmospheric water vapour (§2.8). As infrared absorption is not accounted for in the forward 

model used to train the neural network it is misinterpreted as high level cloud and biases the 

ILW retrievals. This technique has been further developed to adjust the calibration of 

microwave radiometers to ensure ILW≈0 in clear sky conditions [Gaussiat et al., 2006]. In 

patchy cloud the variability of the infrared brightness temperature also generates errors in the 

neural network ILW [Güldner and Leps, 2005]. 

5.6.2 Problems with ILW retrievals 

There are several potential sources of error in the ILW retrievals from the neural network – a 

full review of which is given in Crewell and Löhnert [2003]. The retrievals are sensitive to 

errors in the absorption models used to train the neural network, including a great uncertainty 

regarding the absorption of super-cooled liquid water, which may introduce a bias of 15-

30 g/m2 in ILW retrievals [Marchand et al., 2003]. Typically, ILW shows a correlation length of 

about 5 min, determined by a high resolution radiometer (1 s sampling at  1° beamwidth) 

[Rose et al., 2005]. Using broader beams and/or longer integration times may not resolve the 

full variability of ILW. Furthermore, time and beamwidth differences between sampling each 

channel may introduce additional errors in the ILW retrieval. For the Radiometrics TP/WVP-

3000, with a 4 s delay between sampling the 22.235 and 51.25 GHz channels that provide the 

ILW information and a beamwidth ~4°, this is estimated to introduce errors of up to 20% for 

clouds with base ~1 km following the analysis of Crewell et al. [2001]. This will dominate over 

the random error in ILW due to radiometric noise for thick cloud layers >100 g/m2 (the global 

average). 

 



 124

Scattering by rain drops or wet snow is not included in the forward model or the state space of 

the neural network retrievals. In situations where this becomes significant it is expected to 

bias the retrievals. Czekala et al. [2001] pointed out that the amount of liquid water in rain can 

approach that in the cloud and that microwave radiometers are sensitive to emission from 

both sources. Löhnert and Crewell [2003] calculated that ILW retrievals deteriorate when the 

integrated total of cloud and rain liquid water amount exceeded ~700 g/m2 and that for 

ILW>400 g/m2 droplets often become large enough to produce significant scattering at 

90 GHz and introduce a sensitivity to drop size distribution. 

 

5.6.3 Linearity of cloud fraction averaging 
As cloud can introduce large errors of representatives due to its great variability, it may be 

beneficial to average observations in cloudy conditions prior to using them in retrievals. A 

simple experiment was conducted to investigate the implications of doing this.  

 

The linearity of the cloud retrievals has been investigated by comparing the retrieval of a 

uniform layer of thin cloud with that for an equivalent layer of thicker, broken cloud to 

ascertain the optimum sampling strategy. A radiosonde profile was selected from Camborne 

with a ~1km thick layer near saturation. Initially, the forward model was run on this profile with 

no cloud to generate a synthetic observation vector. Then cloud was added, uniformly 

distributed over this layer in increments of 50 g/m2 up to 500 g/m2 and the forward model 

repeated for each modified profile. To investigate whether 100% cloud cover with thin cloud 

(50 g/m2) is equivalent to 10% cloud cover with thicker cloud (500 g/m2), another case was 

created representing the linear average of 9 sets of synthetic observations in clear skies and 

1 in dense cloud (500 g/m2). The mean brightness temperatures, <Tb>, in this case were 

found to be identical with those for the case of uniform thin cloud within their errors (r.m.s. 

difference = 0.15 K), as illustrated in Figure 5-10. 

 

 

Figure 5-10 Schematic time series of brightness temperatures viewing synthetic clouds 
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The neural network was applied to each set of synthetic observations and the retrieved 

profiles compared with the profile retrieved from the clear sky case. The case of 100% cloud 

cover with 50 g/m2 was found to give the same small biases as the case of 10% cloud cover 

with 500 g/m2. The r.m.s. differences of their temperature and humidity profiles were 0.05 K 

and 0.3%RH, respectively. This is much smaller than their difference from the clear sky case 

(0.28 K and 3.6%RH). The neural network’s ILW retrievals were also identical in both cases.  

 

The result of this experiment shows the effect of cloud liquid on the radiative transfer is linear. 

So, in situations with broken cloud, observations can be averaged in time before being used 

in the retrievals without introducing bias in the retrieved average profile or ILW.  However, this 

may not be the most efficient use of the observing cycle, as will be discussed in Chapter 7. 

 

5.7 Summary of Performance of Neural Network Retrievals 
The statistics of the profiles retrieved by the neural network reflect the limitations in the 

background data: they have a large variance to cover the annual range of conditions, and 

corresponding biases as annual average conditions do not represent typical conditions in 

most cases.  

 

Although the neural network retrievals were originally designed for application to zenith views 

only, they have recently been extended to apply to observations from a range of elevation 

angles (§5.4). This offers the potential to improve their vertical resolution. However, a number 

of practical problems were encountered, including the sensitivity to the alignment of the 

instrument and the homogeneity of the atmosphere. This effectively limits the application of 

the elevation scanning retrievals including low frequency channels to clear sky conditions. 

However, absorption by oxygen at frequencies above ~54 GHz is so strong that clouds do not 

contribute significantly to the observations here, so there is scope for elevation scanning to be 

applied to improve the vertical resolution of temperature profiles in the lowest 1 km. 

 

The performance of the neural network retrievals was validated against profiles from co-

located radiosondes (§5.3). The standard deviation of these retrievals was slightly higher than 

expected from the statistics of the training data set, due to their underestimation of the 

observation errors. There were also significant biases found in the retrievals. The temperature 

below ~2 km was consistently too warm, while it was often too cool at higher levels. The 

former was found to be due to a bias in the calibration of the high frequency channels of the 

radiometer, and has been correctly empirically. The latter may be related to a bias found in 

the validation of the forward model (§2.7.2). The humidity profiles were also found be have 

state-dependent biases, which may be due to inconsistencies between the observations and 

the forward model. Although retrievals using the elevation scan were found to be beneficial in 

some cases, the statistics showed no significant improvement to the temperature profile and 
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substantial degradation to the humidity profile, probably due to the sensitivity of the low 

frequency channels at low elevation angles to surface emissions. 

 

The neural networks have also been trained to retrieve the integrated water vapour (IWV) and 

liquid water (ILW) amounts. The IWV has also been validated against co-located radiosondes 

and found to agree with a standard deviation of ~0.9 kg/m2 and a small bias. It has also been 

compared with IWV derived from co-located GPS sensors, with similar statistics. This raises 

the question of the benefit of the low frequency channels over and above the information 

available from cheaper GPS and surface sensors, which will be addressed in §7.1.4.  

 

5.7.1 Pros and Cons of neural network retrievals 

The key advantages of the neural network are that it allows profiles to be retrieved from 

observations in very little computer time and that they are independent of NWP models, so 

can be considered as independent validation of their representation of the evolution of the 

atmosphere. 

 

The independence of NWP can also be considered a disadvantage of this neural network, as 

it has to rely on a statistical climatology to provide a background profile, which is not as 

accurate as a short-range forecast. This causes the neural network retrievals to be less 

accurate than 1D-VAR taking their background from NWP, especially above 1 km [Cimini et 

al., 2006b]. However, there are a number of other disadvantages of the current 

implementation of the neural networks. The training process is computationally expensive and 

requires a very large data set of profiles. Because of this it is difficult for the neural network to 

adapt to situations where any of the channels become unusable because of instrument faults 

or interference. It also introduces errors if it is applied to locations other than the site of the 

training data set. The retrievals are prone to generate unpredictable results if applied outside 

the limited range of the training data set.  

5.7.2 Future Improvements to Neural Network 

The accuracy of the neural network’s retrievals could be improved by including a better 

forward model for the infrared brightness temperature, and accounting for the microwave 

channels’ finite bandwidth and their finite beamwidth when using elevation scanning. The 

elevation scans should also include a check on the assumption of horizontal homogeneity by 

comparing symmetric views in opposite directions. 

 

The neural network should also include quality control checks on whether the observations 

are within the range of the training data set and whether they are consistent with the retrieved 

profile. These could be implemented as χ2 tests, similar to those described in §4.7.5, 

comparing the distribution of the residuals of the observations and the forward-modelled 
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retrieved profile with its covariance. Initial tests showed most of the 1% of cases with χ2>100 

were suspicious, while all those with χ2>1000 were clearly erroneous. 

 

As suggested in §4.8.2 the first guess for variational retrievals can be chosen arbitrarily, 

although it is not always beneficial to do so. For example, Cadeddu et al. [2006] suggested 

using the profile retrieved from the neural network as a first guess for a variational retrieval. 

They claimed it is necessary for the first guess humidity profiles to be within 20% of the truth 

for the variational retrievals to converge. However, the results above show the profiles 

retrieved from the neural network are no better than the NWP backgrounds above ~1 km, so 

this is unlikely to be beneficial where NWP data is available.  

 

It is also possible to improve the background used by the neural network to make it more 

representative of the profile expected in each season and time of day. This could be achieved 

by training a new neural network including the date (as day number of year) and time as 

additional inputs. The range of the training data set could also be extended by including 

profiles from more radiosonde stations at similar altitudes, taking care to maintain an average 

climate representative of the radiometer’s site. It could also be extended artificially, by adding 

noise to the training data. Another approach would be to use NWP model profiles to train the 

neural network, as this should include a wider range of conditions, although it will also cause 

the retrievals to reproduce any biases in the training data set. However, there is a trade-off 

when selecting the training data set. If it is more specific to a site or season the neural 

network may give better retrievals, but only over a more limited range of conditions. On the 

other hand, the validity range can be improved by using a broader training data set at the 

expense of producing blander retrievals. 
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Chapter 6 Case Studies 
This chapter uses several case studies to illustrate the benefit of retrievals from ground-based 

microwave radiometers for nowcasting and research applications. These examples are case 

studies and necessarily somewhat qualitative in nature compared to the statistical analysis of 

the neural network’s performance in Chapter 5. Retrievals from observations of the 

Radiometrics TP/WVP-3000 microwave radiometer by the neural network have been used for 

speed. Variational retrievals may show different benefits due to their better background data. 

 

6.1 Retrievals in Convective Conditions 
With the advent of convective-scale NWP models that can explicitly resolve convective 

processes instead of parametrizing them, it is pertinent to examine in this section the 

radiometer’s ability to provide observations on these scales. 

6.1.1 Example of Convection – Cardington 8 April 2003 
During Spring 2003, the Radiometrics TP/WVP-3000 was operated at Cardington – an inland 

site – and radiosondes launched frequently on 5 case study days [Hewison, 2003]. Profiles 

retrieved from radiometer observations by the neural network for a 12 hr period on 8/4/03 are 

shown in Figure 6-1 as time-height plots from 0-2 km. Although the retrievals have a poor 

vertical resolution, their high time-resolution helps reveal fine structure and identify trends in 

the data. 

 

Figure 6-1 Time-height plots of profiles retrieved from radiometer observations at 
Cardington over 12 hours on 8/4/03. Upper panel shows temperature (°C), middle panel 

shows relative humidity (%RH), lower panel shows liquid water content (g/m3).  
Vertical lines indicate times of radiosondes plotted in Figure 6-2. 
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This day started with a surface inversion. Solar heating warmed the surface, resulting in an 

adiabatic profile (below 1 km) for most of the day, with a very shallow super-adiabatic layer at 

the surface during the early afternoon. The upper panel of Figure 6-1 shows the lapse rate 

increasing rapidly below 1 km during the morning. This initiated convection, causing the 

relative humidity to increase around 1 km and decrease near the surface, forming small 

cumulus clouds after 0917 UTC. The cloud base then increased slowly from 1.2 to 1.7 km. 

The humidity and cloud retrievals show high temporal variability. 

  

On this day, the retrievals were validated against hourly radiosondes, a selection of which are 

shown in Figure 6-2. The neural network retrieved the initial surface inversion quite well. It 

then correctly retrieved adiabatic profiles in the lowest 1 km for the remainder of the day. 

However, the retrievals failed to resolve the capping inversion at the top of the boundary layer 

(~1.5 km), which limited the vertical extent of the cloud development. For example, 

considering the 1122 UTC case, the radiosonde profile shows a 5 K temperature inversion 

and strong hydolapse at the top of the boundary layer at 1.6 km due to anticyclonic 

subsidence. This is poorly resolved by the radiometer retrievals. They correctly identify a well 

mixed layer near the surface with temperature decreasing with height following the dry 

adiabatic lapse rate and the dew point decreasing more slowly with height as the RH 

increases and the specific humidity remains fairly constant. However, above 1 km the 

radiometer retrievals fail to resolve the inversion and produce less steep lapse rates for both 

temperature and dew point, resulting in errors of up to 4 K and 10 K respectively. The 

retrievals also spread the super-adiabatic layer at the surface (e.g. at 1514 UTC) too deeply 

in the vertical as a result of the correlation between these levels in the background data. This 

shows how poorly the neural network retrievals perform when there are interesting features in 

the profile. 

 

Profiles forecast from the mesoscale NWP model run initiated at 0000 UTC are also plotted 

on Figure 6-2. These show generally excellent agreement with the radiosonde profiles, 

although the humidity in the lowest 1 km was initially too low, but too high later in the day 

once convection was established. The forecast temperatures also showed small errors at 

0917 UTC and 1713 UTC, due to the model seriously under-estimating the magnitude of the 

nocturnal surface inversion (see Figure 6-4). The mesoscale model forecasts represent the 

inversion at ~1.5 km well as this is a synoptically forced feature. It is expected, therefore, that 

variational retrievals using the model for background would perform better than the neural 

network in this case. 
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Figure 6-2 Profiles of temperature (solid lines) and dew point (dotted lines)  
measured by 6 radiosondes (blue), forecast from mesoscale NWP model (black)  

and retrieved from radiometer observations (red) at Cardington on 8/4/03.  

6.1.2 Static stability 

The potential of the neural network to retrieve information on the static stability is investigated 

in this section. The static stability describes the buoyancy of a parcel of air when displaced 

relative to its environment. In unsaturated air, it can be determined by examining the vertical 

gradient of the potential temperature profile, ∂θ/∂z. More generally, the gradient of the virtual 

potential temperature should be considered, as the virtual temperature is proportional to the 

density of air and its gradient determines the stability. Here the wet-bulb potential 

temperature, ∂θw/∂z, has been examined, as θw is conserved in reversible moist adiabatic 

processes. Its calculation requires profiles of both temperature and humidity, and can be 

derived from profiles retrieved from the radiometer’s observations. However, these gradients 

represent differences of noisy retrievals, and, hence they are prone to larger errors.  

 

Figure 6-3 shows an example of θw evaluated over the same 12 hr period shown in Figure 

6-1. Initially, the profiles were stable with θw increasing with height. But as the surface 

warmed, ∂θw/∂z became negative in the lowest 500 m around 0800 UTC, showing convective 

instability. During the rest of the day, there were short periods of convective instability 

Sonde 
Retrieval  
Model 
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extending to above 1 km, corresponding to the build up and release of Convective Available 

Potential Energy (CAPE). This has also been found in single column modelling of convective 

processes [Xie and Zhang, 2000]. However, it is difficult to accurately estimate the CAPE in a 

retrieved profile, because this is very sensitive to fine-scale features, which are not well 

represented by the retrievals’ poor vertical resolution. (The CAPE was small in this case due 

to the strong capping inversion.) Profiles of θw calculated from the hourly radiosondes, shown 

in the right-hand panel of Figure 6-3, follow a similar pattern to those calculated from the 

radiometer retrievals. Although they detect the second minima at ~1.6 km, corresponding to 

the subsidence inversion, they do not resolve the fine temporal structure of the convection. 

 

 

Figure 6-3 Time-height plots of wet-bulb potential temperature from profiles retrieved 
from radiometer observations (left) and radiosondes (right) at Cardington on 8/4/03. 

 

More simply, the lapse rate near the surface can be estimated as the difference between the 

surface temperature and that retrieved at 1 km. This is evaluated over the 24 hr period of the 

same example in Figure 6-4. This shows the retrieved lapse rate became negative soon after 

sunrise as the nocturnal surface inversion was overcome by solar heating of the surface. For 

most of the daylight hours the boundary layer approximately followed the dry adiabatic lapse 

rate (-9.8 K/km). But note there are small oscillations ~1 K with a period of ~30 min, which 

corresponds to the time-scale of thermal overturning of the convective boundary layer. Solar 

heating of the surface generated shallow super-adiabatic layers, which resulted in lapse rates 

temporarily lower than the dry adiabatic lapse rate. The retrieved lapse rate closely followed 

that measured by radiosondes. The mesoscale model also followed the same dry adiabatic 

lapse rate (allowing for surface heating) while the boundary layer was convectively unstable. 

The model’s resolution (12 km) does not allow the convective features to be represented 

explicitly, so its lapse rate is much smoother than the radiometer retrievals during this period. 

However, the model seriously over-estimates the surface temperatures at night, resulting in 

an under-estimation of the lapse rate from 00-08 UTC and again from 17-24 UTC. 

           θw Retrieved from radiometer observations        Radiosonde θw Profiles                °C 
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Figure 6-4 Time series of difference between the temperature at 1 km and surface 
forecast by mesoscale model, measured by radiosonde and retrieved from radiometer 

observations by neural network over 24 hr period at Cardington 8/4/03. 

6.1.3 Resolving thermals 
In Summer 2005, the Radiometrics TP/WVP-3000 was deployed at Linkenholt, Hampshire 

(UK) for the duration of the Convective Storm Initiation Project (CSIP) [Hewison and Gaffard, 

2006]. A wind profiling radar was also operated at the same site configured to measure the 

vertical velocity and spectral width at high resolution, allowing the identification of individual 

thermals. In this example, one short period of data on 29/6/05 is examined to illustrate the 

ability to resolve the structure of strong convective thermals from the radiometer data. This 

convection was associated with a thunderstorm which later caused flash flooding in Oxford. 

 

The neural network retrievals from the radiometer data are shown in Figure 6-5 for a 1 hr 

period on this day. The wind profiler showed a thermal plume started ascending at 1633 UTC, 

reaching a maximum vertical velocity of 1 m/s [Nash et al., 2006]. Figure 6-5d shows the 

surface temperature gradually increased from 18.2 to 19.3 °C at 1628 UTC, which may have 

triggered convection, forming the updraught. The temperature profiles in Figure 6-5a show 

unstable conditions – a large temperature gradient – near the surface at 1633 UTC, before 

the thermal. The temperature profiles then show neutral well-mixed conditions within the 

thermal – a smaller temperature gradient. The relative humidity was lower within the thermal 

(60-75 %), due to its higher temperature. The profile remained closely adiabatic until the end 

of the updraught at 1639 UTC. Figure 6-5i also shows the IWV built up before the thermal, 

then released, although this could be associated with the presence of low clouds (Figure 

6-5j). At 1631 UTC this low cloud cleared, allowing solar heating of the surface to initiate 

convection. The other periods of Figure 6-5 showing similar warm plumes of low RH also 

correspond to periods of ascent in the wind profiler data, but with weaker vertical velocities. 

Model forecast 

Radiosondes 

Retrievals
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Figure 6-5 Retrievals from microwave radiometer observations on 29/6/05 16-17 UTC 
showing (a) temperature, (b) relative humidity and (c) liquid water time-height cross 

sections for 0-2 km height. Time series of scalars are also shown in red for (d) surface 
temperature, (e) surface relative humidity, (f) pressure, (g) infrared brightness 

temperature, (h) rain sensor, (i) integrated water vapour and (j) integrated liquid water. 
Arrows indicate updraught and downdraught. 

 

Although radiosondes were not launched from Linkenholt on this day, one was launched at 

1600 UTC from Larkhill, 38 km south-west of Linkenholt and 90 m lower altitude. The profile 

measured by the radiosonde, shown as a tephigram in Figure 6-6 has a temperature 

inversion at about 900 hPa (~0.7 km). Normand's construction shows that the surface 

temperature needed to exceed 19.5 °C for a parcel of air to overcome this convective 

inhibition and become unstable in relation to the environment, releasing convective available 

potential energy (CAPE) of 289 J.kg-1. This would result in the development of cloud more 

than 7 km deep and hence thunderstorms. Figure 6-6 also shows the profiles retrieved from 

radiometer observations at two times, representing the extremes of the convective cycle. At 

1633 UTC, before the thermal had initiated, the retrieved profile shows absolute instability in a 

super-adiabatic layer near the surface. By 1637 UTC, during the updraught, the profile is ~3 K 

warmer at 950 hPa with neutral stability over a deep well-mixed boundary layer with a weak 

inversion at the surface. However, these conclusions depend on the synchronisation between 

the wind profiler and radiometer clocks. On other days, their signals are not coincident. 

f 
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Figure 6-6 Tephigram showing profiles of temperature (solid line) and dew point 
(dotted lines) in lowest 3 km on 29/6/05.  

Black lines show profile from radiosonde launched from Larkhill at 1600 UTC.  
Blue and green lines show profiles retrieved from radiometer observations at 

Linkenholt, before the thermal at 1633 UTC, and within the thermal at 1637 UTC. 
Red lines are Normand’s construction showing the trajectory of a buoyant parcel of air 

from the surface at 19.5 °C / 13.5 °C temperature/dew point. 

 

6.2 Retrievals of cloud and fog 
Although this work has concentrated on the retrieval of temperature and humidity profiles, the 

neural network also outputs profiles of liquid water content as well as the column integrated 

amounts of liquid and vapour. The Integrated Liquid Water retrievals were discussed in §5.6. 

The microwave channels have very little sensitivity to the vertical distribution of cloud as the 

spectrum of emission by liquid water follows a broad continuum and only has a weak 

temperature dependence. Most of the skill in the neural network’s retrieval of liquid water 

profile comes from the infrared radiometer measurement of the cloud base temperature and is 

inferred from the humidity profile, as liquid water cloud cannot persist in very dry air. It is 

difficult to validate liquid water retrievals because of the absence of suitable sensors on 

radiosondes, but it is useful to examine the performance of the retrievals in a foggy case. 

 

Figure 6-7 shows time-height plots of the profiles retrieved from zenith radiometer 

observations at Payerne over 24 hr on 5/12/03. In the morning, the retrievals show a surface 

inversion - the temperature increases with height to 1 km – trapping a humid layer near the 

surface, forming fog in the lowest 200m. Solar heating warmed the surface during the 

Temp Dew Pt 

Sonde ⎯⎯  -------- 

19.5 °C ⎯⎯  -------- 

16:33 ⎯⎯  -------- 

16:37 ⎯⎯  -------- 
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morning, and subsequently the lowest 1 km, causing the inversion to weaken and the relative 

humidity to reduce. This allowed the fog to lift briefly from 1300-1600 UTC, before it reformed 

after sunset when the surface cooled again. Although the cloud retrievals do not resolve a 

clear fog top, they suggest is was deeper in the evening when the inversion was weaker than 

in the morning. This was confirmed by a co-located cloud radar to be 200-300 m during the 

morning and ~500 m in the evening. The cloud retrievals can be improved by applying a 

minimum threshold to the relative humidity where clouds are placed in the retrievals, but this 

is unlikely to have a strong impact due to the retrieved humidity profiles’ poor vertical 

resolution. 

 

 

Figure 6-7 Time-height plots of profiles retrieved from radiometer observations at 
Payerne for 0-2 km over 24 hours on 5/12/03. Upper panel shows temperature, middle 

panel shows relative humidity, lower panel shows liquid water content.  
Vertical line shows time of radiosonde profile. 

 

The profiles retrieved by the neural networks using zenith and elevation scanning 

observations from the Radiometrics TP/WVP-3000 are compared with the co-located 

radiosonde in Figure 6-8. The radiosonde shows a saturated, isothermal layer 300 m deep at 

the surface and a strong inversion above this, with further stratified layers extending to 

770 hPa (~2.2 km), above which it is approximately adiabatic, but very dry. Both retrievals 

identified the temperature inversion and general humidity structure, though were unable to 

resolve the structure of the layers above. The retrieval using the elevation scan is slightly 

closer to the radiosonde’s temperature near the surface, though still has temperature errors of 

up to 3 K at some levels and is unable to accurately represent the shallow isothermal layer. In 
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this example the atmosphere was sufficiently homogeneous to pass the quality control test 

described in §5.4.1 and condensation had not formed on the radiometer, so there is no 

reason to reject the retrieval on these grounds. The poor performance of the elevation scan 

retrievals can only be explained by their inherent poor resolution, combined with the problems 

of sensitivity to surface emissions described in §3.2.1 for the humidity profile. 

 

 

Figure 6-8 Tephigram showing profiles of temperature (solid line) and dew point 
(dashed lines) in lowest 5 km at 1100 UTC on 5/12/03 at Payerne, Switzerland.  

Black lines show profile from radiosonde.  
Blue and green lines show profiles retrieved by neural network using zenith only and 

elevation scanning radiometer observations, respectively. 

6.3 Ability to retrieve temperature inversions 
The statistical assessments of the retrievals in Chapter 5 do not explicitly test their ability to 

retrieve inversions, which are of great interest when forecasting boundary layer phenomena 

such as the evolution of cloud or fog. It seems from inspection of Figure 6-2 and other cases 

that the neural network is incapable of fully resolving elevated inversions with a base above 

1 km. The retrievals’ performance can be assessed by comparing the properties of the 

temperature inversions in the retrieved profiles with those calculated from the significant 

levels from coincident radiosondes.  

 

Temp Dew Pt 
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Figure 6-9 Differences between height and temperature at the top and base of inversion 
layers retrieved from the radiometer and measured by coincident radiosondes at 

Payerne 5/11/03-19/1/04. Includes all inversions – surface based and elevated. 

 

The differences between the height and temperature at the top and base of inversions 

retrieved from the radiometer and measured by coincident radiosondes during the TUC 

experiment are compared in Figure 6-9. This included all inversions with magnitude of at least 

1 K, with a base below 2.5 km. The r.m.s. differences for the subset of comparisons in clear 

skies, foggy and cloudy conditions are given in Table 6-1. This shows the ability to retrieve 

inversions is reduced by the presence of fog or cloud due to the variability they introduced 

into the scene radiances. It is also evident from Table 6-1 that the retrieval of surface-based 

inversions is less challenging, as the surface sensor provides a strong constraint of the 

temperature at its base.  

 

Table 6-1 Statistics of neural network retrievals of inversion height, ΔH, and 

temperature differences, ΔT 

r.m.s. 

ΔH (m) 

r.m.s.  

ΔT (K) 

r.m.s. 

ΔH (m)

r.m.s.  

ΔT (K) 

Inversions 

ΔT>1 K, 

zbase<2.5 km All Inversions Surface inversions 

Clear Sky ∗ 204 1.9 123 1.1 

Foggy       × 329 1.9 208 1.2 

Cloudy     ο 340 2.8 375 2.8 
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6.4 Average layer temperatures 
The geopotential thickness of atmospheric layers between levels of fixed pressure 

(thickness), which is commonly used by forecasters for a number of applications, is directly 

proportional to the average temperature of that layer. The microwave radiometer’s channels 

in the oxygen band are sensitive to emission over relatively thick atmospheric layers and can 

provide accurate retrievals of the layer average temperatures. For example the 1000-850 hPa 

thickness has been used by forecasters in the UK as an indicator of the probability of any 

precipitation falling as snow and for maximum temperature forecasting. This is a linear 

function of the average temperature of the lowest ~1.5 km of the atmosphere, which in turn is 

linearly related to the brightness temperature in the 54-60 GHz channels.  

 

It is also possible to calculate the thickness between other pressure levels. For example, the 

1000-500 hPa thickness is commonly used to identify warm and cold advection on synoptic 

scales. A time series of this thickness over the 2 months of the radiometer’s deployment at 

Cardington in Spring 2003 is shown in Figure 6-10. This shows diurnal cycles on some days 

as well as larger changes on longer timescales related to frontal passages over the 

radiometer. The 1000-500 hPa thickness has been calculated here from the average 

temperature retrieved by the neural network over the lowest 5.5 km of the atmosphere. It is 

evident that the resolution of the thickness calculated in this way is better than 1 dm, 

corresponding to a <0.5 K in average temperature. This approaches the accuracy achieved 

by radiosondes (~0.2 K r.m.s.) [John Nash, personal communication, 2006] and is 

comparable to short-range forecasts by NWP models as seen by the background error 

covariance matrices calculated by NMC method in §4.3.2.2. It would also be possible to 

retrieve thickness directly from the observations by re-training the neural network, but this 

may not be advantageous as the optimal temperature profile retrieval should also yield the 

optimal retrieval of layer average temperatures [Thiebaux, 1973]. 
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Figure 6-10 Time series of 1000-500 hPa thickness calculated from profiles retrieved by 
neural network from radiometer observations at Cardington in Spring 2003. 

 

6.5 Performance in rain 
Retrievals from radiometer data are expected to be degraded in rain because of the scattering 

of microwave radiation by raindrops as well as emission from liquid water that accumulates on 

the instrument’s window (as discussed in §5.5.2). It is useful to compare the retrieved profiles 

with co-located radiosondes to assess the impact of rain on the retrievals. This is shown in 

Figure 6-11 for a series of radiosondes, showing an elevated temperature inversion, which 

lowered during the morning. The humidity increased at higher levels and the cloud thickened 

(LWP increased) as a cold front approached Camborne from the northwest. Although the 

radiometer’s rain flag was set throughout this period, the retrievals closely matched the 

radiosonde profiles during the morning, until the Integrated Liquid Water (shown as LWP) 

exceeded 1 mm (1000 g/m2) after 1515 UTC. Initially the rain biased the retrieved 

temperature profile above 1 km (although the bias near 2 km at 1319 UTC is likely to be 

partially due to the retrievals poor vertical resolution at this level). The information for this part 

of the profile comes from the 51-54 GHz channel, where the oxygen absorption is weaker and 

emission from liquid water is more significant than at higher frequencies. After analysing other 

examples, this was adopted as an empirical threshold for the maximum value of ILW, above 

which retrievals were rejected as being likely to be rain-affected due to the radiometer’s 

calibration being biased. 
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Figure 6-11 Profiles of temperature (solid lines) and dew point (dashed lines) measured 
by 6 radiosondes (black) and retrieved from radiometer observations (red) at 

Camborne on 22/5/03. Integrated water vapour (IWV) and liquid water (LWP) retrieved 
by the neural network are indicated in each panel. 

 

n.b. The data in this example was taken before the radiometer’s blower was upgraded and 

the hydrophobic coating applied to its radome. It is expected that these hardware 

modifications will reduce the impact of precipitation on the observations (§2.4.3) 

 

6.6 Comparison with model forecast profiles 
Retrievals from radiometer observations can also be compared with NWP model analyses 

and forecasts. Although it can be useful to validate a single forecast against observations, 

comparing a large ensemble of observations and forecasts can provide insight into the 

systematic shortcomings of each data set. The temperature and humidity profiles retrieved 

from high time-resolution (~12 s) radiometer observations are compared with hourly forecasts 

from an NWP model. Although the retrievals have poor vertical resolution, their high time-

resolution helps reveal fine structure in the data and identify trends. 
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6.6.1 Clear Sky CSIP case – 12 July 2005 

Both retrievals and model in Figure 6-12 show the development of a surface inversion during 

the early hours, trapping a shallow humid layer near the surface, which generated low stratus 

by 0400 UTC, then fog by 0500 UTC. However this inversion is stronger in the retrievals than 

the model, probably as a result of the initial humid layer at 2 km dissipating more rapidly than 

forecast, giving faster cloud clearance, which allowed greater radiative cooling of the surface. 

In this case, if radiometer observations at 0000-0200 UTC had been assimilated into the 

model, the fog may have been forecast more accurately because the cloud would be better 

represented. 

 

 

 

Figure 6-12 Time-height plots of temperature [K](top) and relative humidity [%](bottom) 
retrieved from radiometer observations (left) and hourly T+0 to T+24 hr forecasts (right) 

from mesoscale version of the Met Office Unified Model for Linkenholt on 12/7/05.  
3 radiosonde profiles are shown for comparison, surrounded with black vertical bars. 

White dots show cloud base height measured by laser ceilometer (mostly clear). 

 

The development of the boundary layer, starting with solar heating of the surface and a warm 

layer spreading upward was forecast and retrieved well with temperatures closely matching 

radiosonde observations. However, the retrievals failed to resolve the forecast elevated 

temperature inversion associated with the residual of the previous day’s boundary layer. The 

relative humidity near the surface decreased as the temperature increased, while it increased 

at the top of the boundary layer both in the retrievals and model. However, the retrievals 

spread the humidity over a deeper layer, diluting it more than was observed by the 

radiosondes, while the model tended to over-estimate the humidity at the top of the boundary 

layer compared to the radiosondes. 

     Retrieved from radiometer observations              Forecast from NWP model 

Radiosondes
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Figure 6-13 Time series of observations from Radiometrics TP/WVP-3000 (black) and 
forward modelled mesoscale model output (red) from 00-24 UTC on 12/7/05 at 

Linkenholt. 

 

The radiometer observations are compared to the hourly forecasts from the 00 UTC run of the 

mesoscale model in Figure 6-13 in observation-space. This is an example of the insight 

available from an O-B analysis (§4.6.3). Observations in the low frequency channels initially 

show emission from cloud, which thins within the first hour. This cloud thins more slowly in the 

model forecasts, causing the ambient temperature at the surface to not fall as rapidly as 

observed. The 51-52 GHz and infrared channels show enhanced emission due to the 

formation of fog about 06 UTC, whereas the model only forms thin low-level cloud at this time, 

giving a much lower signal. Solar heating of the surface and a reduction of the boundary layer 

humidity (seen as a reduction in the Tb of the low frequency channels) after 06 UTC caused 

the fog layer to dissipate. Later in the day, the model tended to increase the boundary layer 

humidity too rapidly and overestimated its maximum, compared to the low frequency 

channels’ observations. However, the temperature cycle seen in the high frequency channels 

was well represented by the model. n.b. The forward model shows a systematic bias 

compared to the observations in the 51-54 GHz channels, which may be due to a bias in the 

absorption model (§3.4.2). 

 



 143

6.6.2 Cumulus capped boundary layer CSIP case – 13 July 2005 

A similar comparison is shown for 12 hours of the following day in Figure 6-14. In contrast to 

the previous example, the weather on this day was partially cloudy, with more unstable 

conditions and cumulus congestus developing in the area as a result of convergence between 

a weak northerly flow and a sea breeze from the south during the afternoon. However, these 

clouds were not thick enough to produce rain at Linkenholt. The convective boundary layer 

developed rapidly during the morning and cloud bases increased from 1.0 to 1.5 km later.  

 

 

 

Figure 6-14 Time-height plots of temperature [K](top) and relative humidity [%](bottom) 
retrieved from radiometer observations (left) and hourly T+6 to T+18 hr forecasts (right) 

from mesoscale version of the Met Office Unified Model for Linkenholt on 13/7/05.  
8 radiosonde profiles are shown for comparison, surrounded with black vertical bars. 

White dots show cloud base height measured by laser ceilometer (cumulus). 

 

The profiles retrieved from the radiometer observations show oscillations in temperature and 

relative humidity as a result of convective thermals and colder downdraughts. It remains 

possible that cloud could be partially misinterpreted by the retrievals as changes in humidity 

and this could explain some of the strong oscillations seen in the RH profiles. Nevertheless, 

they are broadly consistent with the radiosonde observations, although exact comparisons 

are made difficult by the atmospheric variability in these conditions. This highlights the 

problems of representativeness errors even between two systems, although they are both 

effectively spot measurements, making it difficult to assimilate observations in an NWP 

model. In this case the hourly forecasts from the NWP model do not reflect the variability, 

either in temperature or humidity, as its 12 km grid  is not able to represent convective scales 

and only provides area averages over the model grid-boxes. Hence it will be impossible to 

fully exploit the observations’ full temporal resolution until it is possible to assimilate them into 

convective-scale NWP models. 

     Retrieved from radiometer observations              Forecast from NWP model 
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Figure 6-15 Time series of observations from Radiometrics TP/WVP-3000 (black) and 
forward modelled mesoscale model output (red) from 07-19 UTC on 13/7/05 at 

Linkenholt. 

 

Figure 6-15 shows the time series for this case of observations in the period 07-19 UTC 

compared to forecasts from the 00 UTC run of the mesoscale model. The observations in the 

low frequency channels show a weak maximum around 13 UTC due to the increase in 

boundary layer humidity, but with large spikes, corresponding to emission from liquid water 

cloud passing over the radiometer. Although the general increase is represented by the 

mesoscale model, its magnitude tends to be overestimated, probably because it is incapable 

of resolving the individual clouds that generate the strongest signal in the observations. The 

infrared radiometer clearly shows emission from the individual clouds at the temperature of 

their base, while the model only generates thin cloud from 11-14 UTC, which has a lower 

maximum brightness temperature of 273 K. The temperature cycle of the boundary layer is 

initially well represented by the model, although there is a discrepancy with the observations 

in the high frequency channels between 13-18 UTC, corresponding to the period when the 

model did not generate any cloud. This resulted in the model overestimating the surface 

temperature after 17 UTC. 
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6.7 Summary of Case Studies 
The microwave radiometer is sensitive to emission over relatively thick layers of the 

atmosphere. This makes its data ideal for retrieving geopotential thickness, a measure of the 

layer average temperature, and identifying trends in this. However, it can also be used to 

retrieve profiles of temperature and humidity, albeit with limited vertical resolution. Its ability to 

retrieve temperature inversions near the surface has been demonstrated, although the 

retrievals were unable to fully resolve elevated inversions with a base above ~1 km. The poor 

vertical resolution can generate errors of several kelvin when comparing retrieved profiles 

with radiosondes which show strong inversions. This is a fundamental limitation of the 

radiometer’s observations and can only be improved by the addition of other data in the 

retrieval – for example, an NWP background or observations from other instruments. 

Retrievals using elevation scanning radiometer observations improved the temperature profile 

near the surface but degraded it at higher levels, as well as the humidity profile compared to 

zenith viewing observations. 

 

The static stability has been analysed from the retrieved profiles and found to be capable of 

representing the basic features of the convective cycle of the boundary layer. It is also 

possible to derive stability indices from the retrieved profiles, either as a simple lapse rate for 

dry processes or more sophisticated potential temperature gradients for moist processes. 

These have been shown to be able to identify periods of static instability in time series of 

observations. 

 

Although the microwave radiometer observations provide very little information on the vertical 

distribution of liquid water, some information on this is provided by the infrared radiometer and 

can be inferred from the retrieved humidity profile. Together with the retrieval of Integrated 

Liquid Water and temperature inversions capping fog layers, these can be related to the 

evolution of the fog. 

 

As well as being validated against radiosondes, time series of profiles retrieved from 

radiometer observations have been compared with forecasts from an NWP model. This can 

be used to investigate shortcomings of both the retrievals and forecasts. It also highlights the 

difficulty faced when trying to assimilate high time-resolution observations in highly variable 

conditions because of the problems of using spot measurements to represent model grid-box 

values. This is fundamentally limited by the resolution of the NWP model, but further 

confounded by the inability to exploit the temporal variability in the 3D variational assimilation 

(3D-VAR) method currently used in the mesoscale NWP model. Ultimately, with the 

development of 4D-VAR in convective-scale NWP models, the observations’ high time-

resolution could address the deficiency of the retrieval’s poor vertical resolution and the 

necessary sparsity of any network of radiometers.  
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Chapter 7 Optimising Observations for Operations 
This chapter extends the analysis of the previous chapters to draw together some 

recommendations for how the radiometer observations could be optimised for operational 

use. It starts by examining the information content of the observations, allowing a trade-off 

between different observing strategies. From this recommendations are made for the 

optimum observing sequence of the Radiometrics TP/WVP-3000 in its current configuration 

and for the specification of future radiometers suitable for operational use. The integration of 

observations from other instruments is also considered and the potential applications of their 

data reviewed. Finally, potential methods to exploit the high time-resolution of the 

observations are reviewed. 

  

7.1 Information Content – Degrees of Freedom for Signal 
The information content of the observations with respect to the background can be quantified 

in the Bayesian framework by introducing the concept of Degrees of Freedom for Signal, 

DFS. This allows a trade-off between different channel combinations and observing 

strategies. DFS represents the number of layers in the profile which are retrieved 

independently [Rabier et al., 2002]. It can be calculated as:  

 ( )1TrDFS −= −I AB  (7.1) 

where  Tr is the trace operator, extracting the diagonal components of the matrix,  

I is the identity matrix, a matrix with ones on the main diagonal and zeros elsewhere,  

A and B are the error covariances of the analysis and background respectively,  

as defined in Chapter 4. 

 

DFS  is somewhat akin to the signal to noise ratio of a scalar measurement, where the term 

(I-AB-1) is the Model Resolution Matrix [Rabier et al., 2002], which describes how much the 

measurement and retrieval processes spreads the profile information relative to a perfect 

retrieval of a reference profile with perturbations applied to each level in turn.  

7.1.1 Instantaneous Observations at Zenith 

Initially, A was evaluated from instantaneous zenith observations, as described in §4.6.1. 

DFS was then calculated using this A and B defined over the full state vector and for subset 

of A and B only covering the temperature profile, DFST . The DFS for the humidity profile can 

then be calculated as DFSq=DFS-DFST. This calculation has been repeated for the 

radiometers and surface sensors (A), surface sensors only (As) and radiosondes (Ars) with 

BATOVS and BNMC in clear and cloudy reference profiles, as shown in Table 7-1. 
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Table 7-1 Degrees of Freedom (DFS) for temperature and humidity profiles using 
instantaneous observations from Radiometrics TP/WVP-3000 

Radiometers, A Surface Sensors, As Radiosondes, Ars Back-

ground 

Error 

Profile Temp. 

DFST 

Humidity 

DFSq 

Temp. 

DFST 

Humidity 

DFSq 

Temp. 

DFST 

Humidity 

DFSq 

Clear 2.8 1.8 0.9 1.0 8.6 7.1 
BATOVS 

Cloudy 2.9 3.0 1.0 1.0 8.6 7.1 

Clear 3.0 1.8 1.0 1.0 11.7 11.4 
BNMC 

Cloudy 3.1 3.2 1.0 1.0 11.7 11.4 

 

For BATOVS in the clear US standard atmosphere, the microwave radiometer (including surface 

sensors) can provide nearly 3 degrees of freedom for temperature, but only ~2 for humidity. 

The surface sensors alone provide approx 1 DFS for both temperature and humidity, but 

these are not linearly independent of the radiometer’s information. The Integrated Water 

Vapour (IWV) can be retrieved accurately from 2 channel microwave radiometers with 

DFSq≈0.7/1.0 in clear/cloudy conditions, respectively. So the 2 DFS for humidity available 

from the radiometer observations represents little additional information on the vertical 

distribution of the humidity profile in clear cases over what would be available from this or a 

GPS combined with a surface sensor. It should also be noted that the correlations in B limit 

the DFS from radiosondes to only 8.6 for temperature and ~7 for humidity, despite their high 

vertical resolution. However, this is still much more information than is available from a single 

1D-VAR retrieval from radiometer data. 

 

The DFS calculation was repeated for a different reference profile – one taken from a 

mesoscale model profile from Camborne with low cloud. This showed little difference in 

temperature information, but increased DFSq by ~1.0, which highlights the benefit of the use 

of microwave radiometers in cloudy conditions. Although this is a typical case, DFSq was 

found to vary by a factor of ~2 depending on the amount of cloud, through its sensitivity in the 

Jacobian, H. The DFS calculation was also repeated including Tir in the observations. As 

expected, this made little difference in clear conditions, but was found to have a small impact 

on the humidity profile in cloudy cases. 

 

The sensitivity of DFS to the assumed background errors was investigated by repeating the 

calculations in Table 7-1 using BNMC as well as BATOVS. This was found to produce slightly 

more DFS for temperature and humidity.  

7.1.2 Averaging Observations to Reduce Radiometric Noise 
The observation errors of the highest frequency channels were found to be dominated by 

radiometric noise (§4.4.1) – if this could reduced better temperature profiles could be 

retrieved in the lowest 1 km. This may be achieved by applying a rolling average of their 
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observations over ~5 minutes, as they are less sensitive to short-term atmospheric variability, 

which dominates the observation error in other channels. Examination of the time structure 

functions in Figure 4-6 showed the 55-59 GHz channels are noise-limited for periods up to 

~1000 s, so if they are averaged over this period, their variance is expected to reduce linearly 

with the number of observations averaged. The radiometric noise of the four highest 

frequency channels was reduced by a factor of 11 and the information content analysis 

repeated. This increased DFS by 0.8 (a 28% improvement) for the temperature profile with 

BNMC and 0.5 with BATOVS, showing a large benefit in both clear and cloudy cases, but no 

benefit to the humidity profile. This was accompanied by a big improvement (~50%) in the 

vertical resolution of the temperature retrievals at all levels above 300 m. The drawback of 

this technique is that applying a symmetric rolling average to real-time data obviously 

introduces a delay before the data is available for retrievals and reduces the ability to resolve 

atmospheric structures on time-scales shorter than the averaging period. 

 

Lower frequency channels are dominated by representativeness errors due to atmospheric 

variability. The experiment described in §5.6.3 showed that observations in cloudy conditions 

can safely be averaged without biasing the retrievals which use them. However, the time 

structure functions in Figure 4-6 show the variance of these channels would not be much 

reduced by averaging in the same way. So it is recommended that they should be used as 

instantaneous observations in the retrievals, and the retrieved profiles co-averaged to 

represent the average conditions over the period. This technique can also yield useful 

information on the variability of cloud not available by other methods (§5.6). 

 

To summarise: although current instruments can be made fast and stable with sufficiently low 

noise to produce beneficial retrievals, reductions in the random noise of the channels near the 

centre of the oxygen band would produce further improvements. 

7.1.3 Extra information from elevation scanning 

Viewing the atmosphere at different elevation angles can bring additional information to the 

retrievals, due to the increased path length, as described in §5.4. The emission seen by a 

channel viewing the atmosphere at different elevation angles can be approximated by 

multiplying the absorption coefficient at its centre frequency by the secant of the zenith angle, 

sec θ, (known as airmass), to account for the increased atmospheric path length. For 

example, an extra view at θ=60° is equivalent to an additional channel with the absorption 

coefficient double that of its zenith viewing counterpart. Figure 7-1 shows the absorption at 

60 GHz is equivalent to that at 56 GHz through a doubled atmospheric path length. Therefore, 

observation at low elevation angles with any additional channels at or below 56 GHz will be 

redundant if they are also observed at an angle with half the value of sec θ. Given the default 

channel set of the Radiometrics TP/WVP-3000, it is recommended that elevation angles 

14.5°, 30°, 90°, 150° and 165.5° would provide the optimum set, but that only the three 



 149

highest frequency channels in the oxygen band need to be observed away from zenith. The 

elevation scan angles need to be symmetric about zenith to check the assumption of 

horizontal homogeneity, which also cancels out small misalignments of the antennae (§5.4).  

 

Figure 7-1 Spectrum of absorption coefficient times the secant of the zenith angle, θ, 

for typical conditions (1013 hPa, 288 K, 75 %RH) viewed at θ= 0°, 60°, 75.5° (sec θ=1, 2 

and 4). Red points show centre frequencies of Radiometrics TP/WVP-3000 channels.  
Grey lines show absorption coefficients at highest 3 frequencies at 3 zenith angles. 

 

Viewing low elevation angles also increases the sensitivity of the 22-30 GHz channels used to 

profile humidity. However, their relative sensitivities remain unchanged, as shown in Figure 

5-5, because the atmosphere remains optically thin (τ.secθ <<1). So no extra information is 

available by sampling these channels at multiple elevation angles, other than by virtue of their 

lower noise. There are other practical considerations which limit the application of elevation 

scans with these channels (§5.4). 

 

Retrievals exploiting observations at different elevation angles were implemented in the 

neural network and found to improve the accuracy in the lowest 1 km of the temperature 

profiles, but degraded the accuracy of the humidity profiles (§5.4). 

 

The potential benefit of adding more elevation angles has been assessed by calculating the 

Degrees of Freedom for Signal (DFS) for elevation angles corresponding to sec θ=1, 2, 3 and 

4. This showed an improvement over retrievals using only zenith views of ~1.2 in DFS for 

temperature using BATOVS in clear or cloudy conditions. The humidity components of DFS 

were improved by 0.8 and 2.0 in clear and cloudy conditions, respectively. But this only 

θ =75.5° 

θ =60° 

θ =0° 
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reflects a reduction in the observation noise due to extra observations. The vertical resolution 

of the temperature profile is improved dramatically in the lowest 300 m, and significantly 

above 3 km. With BNMC the DFS improvements are ~50% larger than with BATOVS. These 

represent vast improvements in the information content and vertical resolution of the profiles 

retrieved from radiometer data by including additional elevation angles. However, it should be 

remembered that this comes at the price of a longer observing cycle, and that there are 

practical problems associated with the use of elevation scanning, particularly with the low 

frequency channels. The trade-off with observing cycle is reviewed in §7.1.5.  

7.1.4 Channel selection 

The implications of adding or removing channels from a given configuration of a microwave 

radiometer can also be analysed using the concept of Degrees of Freedom for Signal (DFS).  

7.1.4.1 Benefit of 22-30 GHz channels 

Given the low number of DFS for humidity raises the question of the value the 22-30 GHz 

channels to the retrievals. These channels provide the information on the humidity profile and 

the integrated liquid water content. However, the 51-52 GHz channels are also sensitive to 

humidity and cloud, so how much extra information are the low frequency channels adding? 

To investigate this, they were replaced with a single channel at 23.8 GHz. This channel is 

least sensitive to the vertical distribution of water vapour [Mätzler et al., 2006], so its response 

is most linear with IWV. When using BATOVS, this was found to reduce the DFS for humidity by 

only 0.1 for both clear and cloudy profiles with and without an infrared radiometer. However, 

when calculated using BNMC, DFSq reduces more - by 0.2 in clear and 0.3 in cloudy profiles. 

This represents a relatively small change (~5-10%) in the information available on humidity 

profile, because of the large correlation between the low frequency channels as a result the 

representativeness and modelling errors. It also reflects the fact that there is a considerable 

degree of correlation between the IWV and the specific humidity measured at the surface. 

(This was calculated over 1 year’s observations at Camborne as r2=0.54.) So it may be 

possible to provide the information on the IWV from a co-located GPS sensor at a much lower 

cost than the extra cost of the low frequency band of the radiometer. However, again the 

conclusions depend critically on the assumed B matrix and on the atmospheric situation: 

more humidity information is available in more humid atmospheres, where the absorption is 

stronger. This simplified analysis would need to be extended over a full range of conditions in 

practice before drawing firm conclusions regarding the configuration of future radiometers. 

7.1.4.2 Influence of excess noise on 57.29 GHz channel 

Similarly, the effect of the excess noise experienced by the 57.29 GHz channel was 

investigated by replacing its elements in R with those of the adjacent 58.8 GHz channel 

(0.03 K2) and zero off-diagonals. This improved DFST slightly in both clear and cloudy cases 
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(by 0.03-0.04 for BATOVS and 0.02 for BNMC), but otherwise made little difference. This 

highlights the redundancy in these channels because of their overlapping weighting functions. 

7.1.4.3 Possible extra channels 

The same method can be applied to quantify the benefit of adding extra channels. However, it 

is difficult to estimate the observation error covariance without observations from an existing 

system. Although the radiometric performance of proposed channels can be predicted with 

some accuracy and safely assumed to be diagonal, and the forward model errors can also be 

calculated using the methods described in §4.4.1.2, it is not possible to estimate the 

representativeness errors by the method described in §4.4.1.3 without a time-series of 

observations. As this term dominates the error budget of channels sensitive to humidity and 

cloud, this limits the confidence we can place in the error analysis of the performance of 

hypothetical channels to those that can be reliably interpolated from existing channels. One 

approach is to assume the representativeness error covariance of these channels is similar to 

that of existing channels, scaled according to the sensitivity of their Jacobians. Alternatively it 

may be possible to estimate it by applying a forward model to a high-resolution cloud 

resolving model [Löhnert et al., 2007].  

 

The architecture of the Radiometrics TP/WVP-3000 makes it possible to measure emission in 

any number of channels within the bands of 22-30 GHz and 51-59 GHz sequentially. This 

feature is not currently fully exploited in the supplied configuration, although it is simple to 

implement by programming the frequency synthesisers used to select the centre frequency of 

the channels. In this way it is possible to sample 21 channels with almost contiguous 

frequency coverage across each of the 8 GHz bands with 400 MHz steps in centre frequency. 

DFS was recalculated with a full set of 42 channels with an error covariance constructed by 

interpolating the eigenvectors of the covariance for the original 12 channels by the method 

described in §4.3.2.1. However, this was found to produce an ill-conditioned error covariance 

matrix, resulting in unstable results when attempting to invert it [Rodgers, 2000]. Instead their 

error covariance was approximated as a diagonal matrix, defined to give results similar to 

those found in §7.1.1, and this was interpolated to the frequencies of the new channels. This 

showed that adding 14 extra channels in the 51-59 GHz band improved the DFS for 

temperature by ~0.4 and its vertical resolution by ~12% above 1 km in both clear and cloudy 

conditions. However, the extra 14 channels in the 22-30 GHz band only improved the DFS for 

humidity by ~0.15. These relatively small gains come at the price of longer overall cycle times 

and support the choice of default channels used in this instrument. 

 

The 183.31 GHz water vapour line is much stronger than the 22.235 GHz line currently used 

by ground-based radiometers, such as the Radiometrics TP/WVP-3000, so has the potential 

to improve the accuracy and resolution of humidity profile retrievals. (Channels near 183 GHz 

are also used in satellite instruments for sounding humidity profiles.) An error analysis 
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conducted as above shows that adding 3 channels centred at 183 GHz (±1, ±3, ±7 GHz) 

makes little difference to the temperature profile, but improves humidity in 1-3 km, adding 

~0.26 DFS for humidity and improving its vertical resolution. At present this represents a small 

additional benefit (<5% improvement in humidity information) for the additional cost of these 

extra channels. Ground-based radiometers operating at these frequencies are now becoming 

commercially available [Cadeddu et al., 2006], primarily aimed at applications in polar 

regions, where water vapour quantities are typically very low, resulting in low sensitivity of 

channels near 22 GHz. As technology improves these frequencies will become increasingly 

affordable, while greater potential for miniaturisation and pressure on the spectrum at lower 

frequencies may make a move to 183 GHz more attractive in future. 

7.1.5 Trade-off channel and angle selection 

In choosing the optimum configuration of a particular instrument, there is a trade-off between 

radiometric noise, observing cycle and retrieval performance, which must consider the 

requirements for each particular application. For example, considering the assimilation of data 

from a ground-based microwave radiometer, the characteristics of the NWP model determine 

the time window available for observations. While mesoscale models typically have time-

steps ~100 s, their horizontal resolution (~10 km) determines the time scale for advection 

(~1000 s) and the background error covariance. This may be considered as the available time 

window for observations (although it is likely to reduce in future as the resolution of NWP 

models increases). Although it is possible to average all observations over this time period 

prior to the retrieval, this is not recommended given the variability of cloud and humidity, 

which dominates the error characteristics of some channels. At the other extreme, all the 

profiles retrieved from instantaneous observations could be averaged, although this would not 

produce a large improvement as the background errors are assumed fixed. However, it is 

beneficial to average those channels that are sensitive only to temperature in the lowest 1 km 

prior to the retrieval process. It has also been shown that viewing a range of elevation angles 

can improve the retrievals, although this extends the observing cycle. These different 

methods of improving the retrievals are compared here, based on the Radiometrics TP/WVP-

3000. 

 

There are delays associated with internal switching of the reference noise diodes, changing 

channel and elevation angle, which also need to be accounted for in determining the optimum 

configuration for this instrument. However, these details are not pertinent to general 

discussion, which will proceed on the basis that 12 channels can be sampled in 7 views (plus 

the internal reference target) in 60 s. These views can be all at zenith, or at 4 symmetric 

elevation angles and optionally averaged over a 300 s window. Alternatively, 42 channels 

could be sampled in the zenith view plus the internal reference view every 60 s, and, 

optionally, an elevation scan of 5 angles could be sampled in a 300 s window.  
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This calculation was done using the observation error covariances, R, defined in §4.4.1, but 

with the dubious spectroscopic error removed, and the elements corresponding to the noisy 

57.7 GHz channel substituted with those from an adjacent channel. To simulate the 

observations of the high frequency channels (55-59 GHz) being averaged over this period, 

their components of R were divided by the number of scans available and the DFS re-

calculated using both BATOVS and BNMC background error covariances. 

 

Table 7-2 Degrees of Freedom for Signal in temperature (DFST) and humidity (DFSq) 
available from Radiometrics TP/WVP-3000 in different configurations  
after averaging 55-59 GHz observations over 300 s before retrievals. 

 Instrument Combination BATOVS BNMC 
 and Configuration Clear Cloudy Clear Cloudy 

  DFST DFSq DFST DFSq DFST DFSq DFST DFSq 

(a) Radiosonde 
 

8.6 7.1 8.6 7.1 11.7 11.4 11.7 11.4 

(b) Surface sensors only 
 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

(c) (b) + Radiometrics TP/WVP-3000 
 

3.2 2.0 3.3 3.0 3.6 1.9 3.7 3.2 

(d) (c) + infrared radiometer (IR) 
 

3.2 2.0 3.3 3.0 3.6 1.9 4.1 3.3 

(e) (c) at 4 elevation angles +zenith IR 
 

4.4 2.7 4.4 5.0 5.5 3.4 5.7 6.3 

(f) (b) + 21 chs 22-30 GHz 
      + 21 chs 51-59 GHz + IR  
(all zenith) 

3.4 2.4 3.4 4.0 3.7 2.9 4.1 3.8 

 

The results in Table 7-2 show that the normal zenith view of the microwave radiometer now 

provides 2.2 DFS for temperature and 1.0 for humidity more than the surface sensors in clear 

conditions. In cloudy conditions DFSq increased by 1.0-2.3, while DFST remained unchanged. 

Although averaging 30 zenith observations in the 55-59 GHz channels increased the DFS for 

temperature, this improvement is not as large as that potentially available by spending the 

same time scanning 4 elevation angles and averaging the same channels over the same 

period. However, it should be remembered that these are theoretical figures only and do not 

account for the practical problems encountered at low elevation angles in the low frequency 

channels. The results for the 42 channels based on interpolated observation errors are 

unstable and subject to large errors. 

 

The analysis error covariance for each observation strategy described above and listed in 

Table 7-2 are plotted in Figure 7-2 as √diag(A) compared to the background error plotted as 

√diag(BATOVS). In these clear conditions, d) is plotted over c) as the infrared radiometer does 

not add any extra information. 
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Figure 7-2 Error Analysis for 1D-VAR retrievals in clear US standard atmosphere. 

Background error covariance matrix from mesoscale model, √diag(BATOVS) (black) and 

analysis error covariances matrices, √diag(A)¸ with surface sensors only (red), surface 

sensors and microwave and infrared radiometer in zenith view (blue), and for elevation 
scan of 4 angles (purple). 55-59 GHz channels averaged over 300 s window.  

Diagonal components plotted for lowest 5 km of temperature [K] and humidity (lnq). 

 

More detailed channel selection trade-offs have been performed by Solheim et al. [1996], 

Cadeddu et al. [2002] and Rabier et al. [2002]. Solheim et al. [1996] described the 

eigenvalues analysis originally used to select the frequencies for the Radiometrics TP/WVP-

3000 channels. Cadeddu et al. [2002] used a wavelet technique to quantify the vertical 

resolution for different configurations of microwave radiometers, which were compared in 

terms of their information gain. They showed a multi-channel system at a fixed viewing angle 

provides more information on the temperature profile above 1 km than a scanning single 

channel system, while the two configurations gave similar results nearer the surface. They 

also found that the best results were achieved by increasing the bandwidth in a multi-channel 

system – this is akin to the conclusions here on the benefit of reducing the noise on the high 

frequency channels. However, these methods have generally not attributed much benefit to 

placing the channels in bands protected for passive use to minimise the likelihood of 

interference (§3.6). 

a) 
b) 
c) 
d) 
e) 

a) 
b) 
c) 
d) 
e) 

DFST DFSq 
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7.1.6 Recommended observing sequence 

The following observing sequence is recommended for the current configuration of the 

Radiometrics TP/WVP-3000, based on the results of the trade-off between observing 

channels and view angles in §7.1.5.  

 

A sequence should be scheduled to cycle between 6 views in turn in a 60 s period. These 

views should be normally include the internal reference target and elevation angles 165.5°, 

150°, 90°, 30° and 14.5° and each view allocated a total of 10 s. This sequence can be used 

for both tip curve calibration of the optically thin channels (22-30 GHz) and for elevation 

scanning retrievals, subject to tests on the consistency of symmetric views. However, the 

lowest elevation angles should not be used in the tip curve calibration and need not be 

observed by the water vapour channels. An alternative configuration of repeating the zenith 

view 5 times, interspersed with a view of the internal reference target would allow more rapid 

sampling where conditions are not favourable for tip curve calibrations or for elevation 

scanning to be exploited (i.e. when the atmosphere is not sufficiently horizontally 

homogeneous). This would allow more frequent cloud information to be provided in these 

situations where it is likely to be more variable. Switching between these modes could be 

achieved automatically based on the variance of recently observed brightness temperatures. 

 

The high frequency channels (55-60 GHz) could then be filtered to reduce their radiometric 

noise by applying a rolling average, with a window of 300 s, prior to using their data in 

retrievals. Calibration data should also be averaged over this period prior to calculating the 

brightness temperatures to reduce the impact of this on radiometric noise (§3.5.1). 

 

A period of 5 minutes should be set aside each day to allow scans of the 5 elevation angles at 

high spectral resolution to be performed, specifically to monitor cases of RFI. The brightness 

temperatures measured in this period should be analysed for self-consistency between 

adjacent frequencies and angles, in line with theoretical expectations, based on radiative 

transfer modelling. The scheduling of this period should be varied to allow detection of 

transmissions that are not constant in nature. 

 

7.2 Integrating data from other instruments 
The variational method allows different instruments to be combined and can provide a basis 

for the development of Integrated Profiling Systems, which have the potential to improve the 

profiles retrieved from the microwave radiometer alone. This has already been demonstrated 

to a limited extent in this thesis (§4.4). Although the inclusion of surface temperature and 

humidity sensors in the observation vector was trivial, as they provide a direct observation of 

two elements of the state vector, the infrared radiance needed a more complex forward model 

to describe its sensitivity to the humidity profile as well as the cloud-base temperature. For 
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each new observation type a forward model operator is required together with estimates of 

the observation error covariance. In future the 1D-VAR retrievals will be further extended to 

include observations from other instruments, described below. These are expected to improve 

the vertical resolution of the retrievals.  

7.2.1 Ceilometer 

Ceilometers (or laser cloud base recorders) are simple backscatter LIDAR (Light Detection 

and Ranging) systems that form part of the operational network of observations, commonly 

deployed at airports to provide measurements of the cloud-base height. They work by 

transmitting laser pulses near vertical and measuring the backscattered signal in a range of 

discrete gates. Although ceilometers typically operate in the near infrared (e.g. 905 nm), they 

are capable of penetrating thin cloud and able to measure the height of up to 3 distinct cloud 

layers. Ceilometers are typically configured to report cloud bases up to 8 km every 30 s. In 

fact, they are capable of providing much more information in the form of full backscatter 

profiles, which can indicate the height of inversions that trap aerosol layers near the surface. 

However, this is not currently exploited operationally due to difficulties interpreting their signal, 

which is a complex function of aerosol content, type and humidity. The signal can also be 

adversely affected by the sun when it is high in the sky. Lidars operating at infrared 

wavelengths are often simpler to interpret and could also be used in a similar way to 

ceilometers. 

 

The height of the lowest cloud base could be used in the 1D-VAR retrieval in a similar way to 

the infrared brightness temperature. It could either be used as a cloud classification indicator 

(§4.8.1) and the first guess modified to ensure that it is cloud free below the cloud base, but 

saturated at that level – or by constructing a simple forward model for the cloud-base height 

and including this in the observation vector. The latter approach is likely to cause 

convergence problems of the type encountered with the infrared radiometer due to its non-

Gaussian error characteristics (i.e. on/off). The ceilometer backscatter signal is generally 

more sensitive to cloud than the thermal infrared radiance and in many cases it will detect 

cloud layers that are transparent at microwave frequencies. For these reasons, it is unlikely 

that the ceilometer alone will have a large impact on the retrievals when an infrared 

radiometer is also available, although it remains attractive in principle, as this combination 

would provide both the height and temperature of the cloud base, and thus fix a point in the 

profile. 

 

It may also be possible in future to use time-series of ceilometer observations to estimate 

profiles of fractional cloud occurrence in situations with broken cloud. This could be used to 

complement the time-series of retrievals from microwave radiometer observations with high 

time-resolution. 
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7.2.2 Cloud Radar  

Cloud radars typically operate in the designated bands at 35 GHz and 94 GHz, where 

backscatter is dominated by liquid and ice drops, for which signal is proportional to their 

number density and the 6th moment of the drop size distribution [Westwater et al., 2005]. This 

results in a much greater sensitivity to large cloud droplets, especially precipitation and 

insects, while clouds comprising of small droplets, such as small cumulus and fog may go 

undetected. It also makes the relationship between backscatter and liquid water content a 

nonlinear function of the drop size distribution. Cloud radars operate in window regions of the 

spectrum, where absorption is dominated by the water vapour continuum, which becomes 

significant at higher frequencies and must be accounted for in quantitative interpretation of the 

signal. 

 

In their simplest form, observations from a cloud radar can be used to define cloud 

boundaries, which can then be combined with microwave radiometer data in a retrieval by 

methods similar to those suggested above for ceilometers. A more sophisticated approach is 

to define a relationship between the backscatter and the liquid water content (LWC) and use 

this as a forward model to include the backscatter profile in the observation vector. This 

approach was adopted in the Integrated Profiling Technique [Löhnert et al., 2004] for pure 

liquid water cloud. Cloud radar and ceilometer data have been combined to classify cloud 

conditions in a profile as either clear, pure liquid water, pure ice or mixed phase cloud, or 

drizzling cloud [Hogan and O’Connor, 2006]. These classifications may be used to improve 

the accuracy of the relationship between backscatter and LWC. 

7.2.3 Integrated Water Vapour column from GPS 

Data from high precision GPS (Global Positioning System) receivers at fixed positions can be 

used to estimate the Integrated Water Vapour (IWV) by measuring the phase delay of signals 

transmitted from multiple GPS satellites [Bevis et al., 1992]. This information is also available 

from microwave radiometer observations at two or more channels in the 20-40 GHz band and 

with comparable accuracy (§5.5), so the integration of the two systems does not seem to offer 

much potential for improving the retrievals. However, GPS sensors may allow a reduction in 

the number of channels needed for a microwave radiometer to retrieve temperature profiles 

accurately above 1 km (§4.9.6) or provide a calibration reference for water vapour channels. 

7.2.4 Wind profiling radar signal 

A wind profiler is a ground-based Doppler radar with 3 or more beams which measures 

signals backscattered from refractive index fluctuations associated with turbulence. The 

Doppler components of the beams from different directions are used operationally to estimate 

profiles of the wind vector, assuming the wind field to be homogeneous over their projected 

area. Typically wind profilers operate in the UHF band for profiling the boundary layer, while 
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VHF systems can be used to profile most of the troposphere. In addition to measuring the 

wind vector, the signal to noise ratio from wind profiler radars is sensitive to the magnitude of 

the gradients in the refractive index. These provide indications of the height of temperature 

inversions (for VHF systems in the upper troposphere) and hydrolapses (for UHF systems in 

the lower troposphere), which can be used to monitor the height of the top of the boundary 

layer. This information could improve profiles retrieved from microwave radiometer data.  

 

The first guess profiles could be modified from the backgrounds available from NWP models 

so the height of any temperature inversions or hydrolapses are consistent with the profile of 

signal to noise ratio observed by a co-located wind profiler. However, attempts to modify the 

first guess in a similar way did not improve the retrieval of an inversion that was present at the 

wrong height in the NWP model background (§4.9.7). So it is unlikely that this technique 

alone would be more successful when applied to wind profiler data, without additional 

modifications to the assumed background error covariance. A slightly different approach is to 

use only the height of the wind profiler’s peak signal strength by including an additional term 

in the cost function to constrain this to coincide with corresponding features in the state 

vector. 

 

A more sophisticated approach would be to construct a reliable forward model to predict the 

wind profiler’s signal to noise ratio from the NWP model fields, together with estimates of its 

error characteristics. This may be possible to model the signal from the elements used in the 

state vector of the retrievals described here – i.e. temperature and humidity. However, a more 

accurate model may need additional terms in the state vector to account for turbulence. A 

thorough review of this topic was performed by Gaffard and Nash [2006]. 

 

7.3 Applications 
Remote-sensing observations are most useful for nowcasting applications when they provide 

extra information over and above what can be seen by cheaper in situ surface sensors. As 

many of the situations where observations can be helpful are driven by surface energy 

exchanges, surface sensors may provide the first indication of change – for example where 

fog lifts as a result of surface heating. However, the radiometer retrievals can be useful for 

monitoring to see if inversions weaken to allow the dissipation of a surface fog layer (§6.3). 

7.3.1 Research applications 

Cloud radiative properties are of prime importance in the detection of cloud-climate 

interactions, which currently dominate the uncertainty in the radiative forcing of future climate 

predictions [IPCC, 2001]. Calculation of the radiative properties of inhomogeneous cloud 

remains a central problem in cloud physics, which can be addressed by observational 

evidence [Wood and Taylor, 2001]. Microwave radiometers with at least two channels in the 
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region of 20-50 GHz can be used to retrieve column amounts of Integrated Liquid Water 

(ILW) due to the different absorption characteristics of the water vapour continuum and liquid 

water (§6.2). Price [2004] used observations of the statistical characteristics of ILW from a 

microwave radiometer to develop a parametrization for the albedo of inhomogeneous 

boundary layer cloud. 

 

Another application for which radiometer observations have proved useful is in the re-analysis 

of case studies, where their information can help make up a more complete picture of the 

atmospheric state and aid understanding of the processes involved. These applications do 

not require real-time retrievals and may benefit from more intensive processing and more 

careful retrospective calibration. An example of this is the identification of changes in the 

profile’s static stability during convection (§6.1.2). 

7.3.2 Demonstrating impact on NWP  

Observations from ground-based microwave radiometers have the potential to address 

recognised deficiencies in mesoscale NWP models. These include the height and strength of 

boundary layer capping inversions [Browning et al., 2006], humidity profiles [Nash et al., 

2006] and integrated cloud liquid water [Price,  2004]. 

 

When considering assimilation of new observation types into NWP models, it is desirable to 

demonstrate that they will have a positive impact on the accuracy of the forecasts. Typically 

this requires parallel runs of NWP models over an extended period (>1 month) with and 

without assimilation of data from real instruments. In turn, this requires reliable instruments to 

be operated and substantial investment in the development of code to quality control, process 

and assimilate their observations. However, this appears to be a “chicken and egg” problem 

to justify the investment in the instruments and the code needed to assimilate their 

observations. 

 

In the present version of variational assimilation used at the Met Office, the background error 

covariance is a property of large ensembles of model forecasts, i.e. they represent the global 

error characteristics of the background field and are assumed to be constant between 

assimilation cycles. Although the assimilation of an observation reduces the analysis error, 

this grows again during the forecast step to the level of the background error by the next 

assimilation cycle. In this case, it is difficult to demonstrate an impact from the assimilation of 

high temporal resolution observations that are statistically consistent with the model 

background. For an observation’s increment to be maintained in the model, it must be 

converted into a set of analysis increments that are dynamically consistent [Lorenc and 

Hammon, 1988]. In a situation where a new single observation is assimilated what needs to 

be considered is how the global error characteristics change in response to that new 

observation type  (when weighed against the existing large observation network driving the 



 160

analysis). Locally, the analysis may be improved significantly from a single observation. 

However, this must be maintained in balance with the surrounding model state. This problem 

is common to the assimilation of data from all new observing networks, particularly ground-

based systems, which are typically deployed piecewise. Observing System Simulation 

Experiments partially address this problem, but still require a full assimilation system and 

realistic simulation of all observation types, with associated development costs. 

 

In the absence of full assimilation trials, 1D-VAR retrievals from a prototype instrument can be 

used to demonstrate the accuracy of profiles retrieved from its data. The performance of the 

1D-VAR retrievals has been compared with the theoretical accuracy from the error analysis 

(§4.6.1) and can be compared to the stated user requirements (§1.1.5). Furthermore the 

residuals of the observations with respect to the forward modelled background have been 

used to identify instrument, forward model and/or background biases and confirm their 

random errors are consistent with the assumptions (§4.6.3). To demonstrate an impact on the 

analysis, offline 1D-VAR retrievals have been set up, based on NWP model background 

fields. Experiments have been conducted to assess whether the observations can help add 

absent features to a background profile, suppress erroneous features and correct vertically 

displaced features. These experiments included an independent data source as truth – 

radiosondes that have not been assimilated. This allowed the demonstration of which model 

parameters are improved by the use of data from the radiometer. These results are 

summarised in §4.9. 

 

While it is unlikely that data assimilation will be conducted at the full resolution of the model, 

future improvements in the model’s resolution are expected to reduce the magnitude of the 

representativeness errors, which dominate the error budget of some channels sensitive to 

humidity and cloud. 

7.3.3 Other retrieval techniques 

Both the 1D-VAR and neural network described above are physical retrievals – they use a 

forward model based on physical principles to translate from state space to observation 

space. It is also possible to develop retrievals based on a purely empirical regression 

between the observations and state space. This technique was demonstrated by Güldner and 

Spänkuch [2001] using a data set of 18 months’ observations from a Radiometrics TP/WVP-

3000 and co-located radiosondes from Lindenberg, Germany. Although their technique 

retrieved profiles with lower variance against radiosondes than the neural network, it requires 

extensive data sets and is limited in application to the location of the training data.Cimini et al. 

[2006b] showed this technique produced similar results to the neural network when applied to 

a different data set. 
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The problem of introducing or moving a feature in the background profile is common to 

retrievals from other systems. This needs further investigation to fully exploit observations 

from Integrated Profiling Systems. It may be possible to modify the correlations in the 

background error covariance, B, dynamically to enforce a discontinuity – for example, at the 

top of the boundary layer. Although this approach is attractive in a 1D framework, it becomes 

more problematic when applied to retrievals in higher dimensions because of the need to 

maintain balance between model fields. This balance is partly achieved through the 

correlations in B, so if used in 3D-VAR and 4D-VAR it would be difficult to recompute 

dynamically. Future developments in data assimilation are needed to allow full use of this and 

many other observation types. For example, the retrieval problem can be re-defined as 

minimising the position (height, temperature) of significant points in the profile [Berkels et al., 

2004]. This technique has the potential to address the problem of variational retrievals’ 

inability to correct features misplaced in the background profile. 

7.3.4 Filling-in observing networks 
One of the key potential applications of a ground-based microwave radiometer is to form part 

of a network of upper air observing systems, complementing radiosondes and aircraft profiles, 

either co-located or spatially distributed. In this concept, data from the radiometer is used to 

fill-in gaps in the observing network – either spatially or temporarily. 

 

Löhnert et al. [2007] presented an analysis of the benefit of observations from an integrated 

profiling system (including a microwave radiometer) for NWP models using an optimal 

estimation framework, referred to as the Integrated Profiling Technique. This was based on 

calculating the analysis error resulting from the retrieval of temperature, humidity and cloud 

profiles from an integrated profiling system, using synthetic backgrounds, simulating the a 

priori information that would be available from the nearest or the latest radiosonde profile. 

Where radiosondes have been launched recently from nearby sites, the background error 

covariance, B, is tightened up, while it is relaxed as time elapses since the launch, or as we 

move further from the launch site. Although they used NWP model fields to simulate a 

radiosonde network with variable density, their technique is independent of the NWP model 

and allows the benefit of different observing networks to be quantified. They express this in 

terms of profit, which they define as the average reduction in r.m.s. error of the temperature 

and humidity profile in the lowest 4 km. Like the Degrees of Freedom for Signal used in this 

study (§7.1), this is dependent on the assumptions inherent in the B matrix.  

 

Löhnert et al. [2007] concluded that the accuracy of the temperature profile degrades linearly 

with time/distance from the radiosonde that provides the background up to ~12 hr/400 km. 

However, for humidity profiles, they found that radiosondes more than the equivalent of 

6 hr/200 km from the observation did not provide a more accurate background than a 

climatological average. This illustrates the greater atmospheric variability of humidity than 
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temperature. Their results can be used to specify the network density required to meet a 

given user requirement for the accuracy of temperature or humidity profiles. For example, a 

typical breakthrough user requirements for the accuracy of temperature and humidity profiles 

of 1 K and 10% (§1.1.5) would require a network densities of <400 km and <100 km, 

respectively. This can be compared to the equivalent spacing of radiosonde observations in 

the UK of 250 km. However, to achieve the maximum user requirements of 0.5 K would 

require an equivalent network density of 150 km for temperature, whereas the stated 

maximum user requirement of 5% for humidity is not achievable at any density of these 

observations.  

 

It is difficult to extend this analysis to include profiles from commercial aircraft on the upper air 

network as their distribution is highly irregular in space and time. However, each participating 

airport could be crudely considered as an additional radiosonde station for temperature.  

7.3.5 Real-time Retrieval Visualisation 
In addition to the assimilation of their data into NWP models, there may be an ongoing 

requirement to visualise microwave radiometer observations in near real-time to monitor the 

performance of the hardware and to provide guidance to forecasters. For this application it 

would be beneficial to continue the development of neural network retrievals, as these can be 

implemented in real-time and independently of NWP to allow radiometer observations to be 

visualised in state space, which is meaningful to the forecaster. Proprietary software now 

allows real-time processing and display of radiometer data and retrieved profiles as time 

height cross-sections and vertical profiles for comparison with radiosondes. This should be 

further developed to increase the flexibility for the user to zoom in on areas of interest and 

select more retrieved parameters, such as static stability (§6.1.2) and thickness (§6.4). The 

user requirement for nowcasting systems states the optimum delay of <5 minutes between 

observation time and the availability of their data (§1.1.5). This does not present a problem if 

retrievals are implemented as neural networks, but it does limit the time window available to 

average the observations or the profiles retrieved from them. 

 

7.4 Exploiting High Time-Resolution Observations 
The geometry of ground-based observations typically means their information is concentrated 

in the planetary boundary layer. This is particularly beneficial to NWP as it complements the 

information available from aircraft and satellites over land, the application of which near the 

surface is limited by variable emissivity and surface temperature in the case of microwave 

sounders and extinction by cloud for infrared sounders. For this reason, ground-based 

observations are expected to have most impact on very short-range NWP. 
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One of the greatest potential benefits of ground-based observations is their high temporal 

resolution. However, to fully exploit the high time-resolution of data available from these 

instruments requires a 4-dimensional assimilation method, such as 4D-VAR. These methods 

have the potential to correct gross errors in the timing of (for example) fronts passing the 

observation location, and this has knock-on effects on much larger scales. As well as direct 

assimilation of observations in 4D-VAR, it is also possible to use it assimilate profiles 

retrieved by 1D-VAR [Marécal and Mahfouf, 2003]. 4D-VAR is computationally expensive. So, 

although it is now operational in global models at the Met Office and other centres, it is not 

expected to be implemented in operational convective-scale NWP models for several years – 

and it is in these high-resolution models that ground-based observations are expected to have 

most impact. Meanwhile, other methods of exploiting the observations’ high time-resolution 

suggested in the following paragraphs could be investigated. 

 

One of the basic assumptions about the potential benefit of observations from ground-based 

instruments is that their high temporal resolution can be used as a proxy for horizontal 

resolution in the direction of atmospheric advection. In 3D-VAR, their data is assimilated at 

nominal observation times with relatively short windows every few hours. In practice, most 

operational 3D-VAR schemes use the First Guess at Appropriate Time (FGAT) method, 

comparing the observation with the background at the observation time.  

 

Lopez et al. [2006] demonstrated a novel assimilation method to exploit the high time-

resolution observations is 2D-VAR using a single column NWP model. They set up this 

unconventional system to investigate the problems of assimilating observations from a co-

located microwave radiometer, cloud radar, GPS and rain gauge. This assimilation aims to 

find initial temperature and humidity profiles that give the best fit between a priori information 

from the model and the observations over a 12 h time window at a given geographical 

location. They assimilated radiometer and GPS observations at 30 minute time-resolution, 

although the cloud radar data needed to be averaged in time to achieve convergence. The 

obvious limitations of this method are that it only produces increments of temperature and 

humidity co-located with observations and has no feedback from the 3D dynamics (unlike 4D-

VAR) and that it cannot modify the forcing – e.g. by including convergence in 2D.  

 

A relatively simple scheme has been demonstrated in this thesis that uses the variability seen 

by the observations to calculate the representativeness errors dynamically (§4.9.5). Although 

this showed little reduction in the variance of the retrieved profiles compared to co-located 

radiosondes, the errors in this comparison were limited by those of the radiosondes and the 

background, which was assumed to be fixed. Similar limitations were found when averaging 

retrieved profiles over a short period prior to validating them against radiosondes (§5.3.2). 

However, this method is expected to produce an average profile which is closer to the 

average of the NWP model’s grid box.  
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It is also possible to use observations at high time-resolution to estimate the sub-gridscale 

variability within each model box and relate this to other quantities in the model. For example, 

the variance could be calculated as well as the mean of a series of profiles retrieved by 1D-

VAR, or these could be used to estimate the cloud fractional occurrence within a model grid-

box. The variance could be empirically correlated to other model parameters as indicators of 

convective activity. However, while the background error covariance remains constant, it will 

be difficult for this method to improve the accuracy of 1D-VAR retrievals. Alternatively, cloud 

fraction could be added as a control variable in retrievals using a time-series of observations.  

 

It is also possible to use profiles retrieved from a time-series of observations, taking the 

analysis of one 1D-VAR retrieval as the background for the next and take its analysis error 

covariance as the background error covariance for the next. This makes the reasonable 

assumption that the observation errors are independent between successive retrievals. 

However, it also assumes that the errors introduced at different stages in the successive 

retrievals are independent, which is more dangerous as it could result in the reinforcement of 

retrievals that converge on erroneous minima. 

 

7.5 Summary of Optimisations for Operational Use 
The information content analysis showed instantaneous radiometer observations at zenith 

(including surface temperature and humidity sensors) provide ~3 degrees of freedom (DFS) 

for temperature and ~2 for humidity in clear conditions and ~1 more DFS for humidity under 

cloud, partially thanks to the use of infrared radiance. DFS for temperature could be increased 

by averaging the noise-limited high frequency channels before using them in retrievals or by 

adding more elevation angles with these channels. The benefits of these techniques were 

traded-off to recommend the optimum observing strategy for the existing radiometer 

configuration, which could approach ~5 DFS for temperature and ~2 for humidity in clear 

conditions, the latter increasing to ~3 under cloud. 

 

This led to the specifications of a microwave radiometer suitable for use as part of an 

Integrated Profiling Station, where its data is integrated with that from a co-located ceilometer, 

wind profiler and cloud radar. Methods were discussed to exploit the high time-resolution of 

the observations from these instruments in NWP models. 
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Chapter 8 Conclusions 
This closing chapter summarises the conclusions of the preceding material of this thesis and 

examines the prospects for the future use of data from ground-based microwave radiometers. 

8.1 Hardware 
Observations from ground-based microwave radiometers can be used to retrieve profiles of 

temperature and humidity and the Integrated Liquid Water path (ILW). Down-welling 

radiances measured in a range of frequencies near absorption features or at different 

elevation angles are sensitive to thermal emission from different levels in the atmosphere. 

This study concentrated on the use of a commercial instrument – the Radiometrics TP/WVP-

3000. This has 7 channels in the oxygen band from 51-59 GHz for temperature profiling and 5 

channels between the water vapour line at 22.235 GHz and the window region at 30 GHz to 

provide information on humidity and liquid water cloud. It can measure at 5 elevation angles in 

a 60 s cycle. This system has participated in several trials and experiments at different 

locations over 4 years (§1.5) and proved very reliable. During this period extensive liaison 

with the manufacturers has resulted in a greater understanding of the system and a number 

of improvements – both hardware, to improve its performance in rain and resilience to 

corrosion, and software, to speed up the observing cycle and improve the calibrations (§3.2).  

 

The stability of the system was of great concern because the massive amplification needed to 

boost the thermal signals to detectable levels can result in gain fluctuations, which cause the 

accuracy to deteriorate between calibrations. Analysis of the radiometer’s data from the trials 

has demonstrated it was sufficiently stable that these did not dominate the overall observation 

errors (§3.5.4). The observations have been validated against forward-modelled radiosondes 

in clear skies (§3.4.2), which showed the observations can be well modelled in the channels 

used for temperature profiling. These comparisons highlighted a bias in the calibration of the 

radiometer’s high frequency channels, which has since been corrected, confirmed a dry bias 

in the radiosondes, and raised concerns about the accuracy of the absorption model near 51-

53 GHz, which warrants further investigation. Budgets of the radiometric noise have also 

been developed (§3.5), showing, while it is adequate to allow retrievals of temperature and 

humidity profiles, it could be further improved by averaging the calibration coefficients and/or 

the observations over a few minutes. However, it was later shown that atmospheric variability 

was more important than instrument noise for those channels sensitive to humidity and cloud.  

 

Although it has not been experienced during these trials, Radio Frequency Interference (RFI) 

poses the greatest threat to the future viability of microwave profiling due to greater pressures 

on the use of the electromagnetic spectrum. It is recommended that some of the following 

techniques are implemented in future radiometer designs to mitigate this risk:  frequency, 

angular and polarisation diversity or statistical analysis of the signal (§3.6.1).  
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8.2 Retrieval Techniques 
The retrieval of temperature and humidity profiles is ill-posed, as an infinite number of 

atmospheric states fit a given set of observations. To resolve this ambiguity requires 

additional a priori background information – either in the form of a short-range forecast from 

an Numerical Weather Prediction (NWP) model, or as a statistical climatology of profiles. 

Chapter 4 and Chapter 5 have shown these approaches can be implemented by different 

retrieval techniques: a one-dimensional variational (1D-VAR) retrieval and a neural network. 

 

The 1D-VAR retrieval has been developed to allow radiometer observations to be combined 

with a background from an NWP model in an optimal way, which accounts for their error 

characteristics. This has been used to retrieve profiles of temperature, humidity and cloud 

using a novel total water control variable (§4.2.2). The retrievals required development of a 

forward model to translate state space to observation space (§2.1) and the specification of the 

error covariances of the NWP background (§4.3.2) and the observations, which include 

contributions from radiometric noise, forward model and representativeness errors (§4.4.1). 

 

A series of experiments was conducted to investigate different aspects of the 1D-VAR 

method. The greater nonlinearity of the observations in cloudy conditions caused slow 

convergence using the Gauss-Newton minimisation method. This was improved by adopting 

the Levenberg-Marquardt method (§4.9.1.3). Other methods of improving the retrievals’ 

convergence rate in cloudy situations were investigated by making the forward model more 

linear between the first guess and the solution (§4.8). Variational retrievals also have the 

advantage of providing an estimate of the error on the retrieved profile. Error analysis (§4.6.1) 

has shown the microwave radiometer system is expected to improve the NWP background up 

to 4 km, retrieving temperature profiles with <1 K uncertainty and 2.8 Degrees of Freedom for 

Signal (DFS) and humidity with <40% uncertainty and 2.2 DFS. In the lowest 1 km, the 

accuracies improve to <0.5 K and <20%. Retrievals from real observations still improved the 

NWP backgrounds’ temperature in the lowest 3 km, but had limited impact for humidity.  

 

Neural networks offer an alternative approach to the inverse problem by combining 

radiometer observations with a statistical climatology of radiosonde profiles. The neural 

network itself is a nonlinear statistical regression between a large ensemble of observation 

vectors and state vectors and was found to generate biases if applied outside the range of its 

training data set (§5.3.4). For this reason, it is recommended that the range of the training 

data set is extended when training neural networks in future. However, this extension of the 

training data set represents a trade-off between performance in extreme conditions and the 

average conditions, which may be slightly degraded as a result of less representative 

background data. However, it may be possible to improve the representativeness of the 

background by training a new neural network to include time and date as additional inputs 

(§5.7.2). 
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The 1D-VAR retrievals have been shown to be advantageous over methods taking their 

background from statistical climatology, such as the neural network (§5.7.1), primarily 

because of the more accurate background information available from NWP models. However, 

variational methods have the disadvantages of being computationally expensive and requiring 

more investment to develop. Despite their problems, retrievals from the neural network are 

fast and, being independent of NWP, can be used to validate their forecasts. 

 

Retrievals using elevation scans have also been developed (§5.4). These were found to give 

small improvements in the retrieved temperature profile, but their application to humidity 

profiling was limited by antenna sidelobes and atmospheric variability. 

 

8.3 Benefits and Limitations 
Microwave radiometer observations can be used to retrieve profiles of temperature and 

humidity as well as the Integrated Liquid Water path (ILW) or be assimilated directly into NWP 

models. This analysis has shown the retrieved profiles have only moderate vertical resolution 

in the boundary layer, which further degrades at higher levels (§4.6.2) to fall short of the 

minimum user requirement above 3 km. However, ground-based systems have the benefit of 

high time-resolution (~1 minute). The profiles can be used to calculate geopotential thickness 

or static stability and can represent the basic features of the convective boundary layer’s 

development (§6.1). They can also monitor the evolution of near-surface inversions, although 

they can only resolve their general structure, not detailed features (§6.2). 

 

The performance of the temperature profile retrievals approach the breakthrough user 

requirements for regional NWP (§1.1.5). However, the humidity profiles fall short of the stated 

minimum requirements due to the large spatial and temporal variability of water vapour 

combined with its poor representation in NWP background fields. 

  

In addition to its poor vertical resolution, there are other limitations to the use of microwave 

radiometer observations. Together with the formulation of the variational method, this makes 

it very difficult for the retrievals to modify the height of features in the profile if they are 

incorrect in the background  (§4.9.7). This problem is in common with other observation 

types. Radiometers are also sensitive to scattering by falling rain drops and their calibration is 

degraded by emission from liquid water on the instrument’s window. However, the effect of 

this was much reduced by the introduction of a hydrophobic coating and improved blower 

mechanism to the point where retrievals were not significantly biased in light rain and drizzle 

(§5.5.2).  
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8.4 Information Content of Observations 
Following the analysis of observation errors it became clear that the accuracy of the 

temperature profiles could be improved if the radiometric noise of the channels near the 

centre of the 60 GHz oxygen band could be reduced – e.g. by averaging successive samples. 

The information content of the observations was quantified in the variational retrieval 

framework using the concept of Degrees of Freedom for Signal, DFS (§7.1). This allowed 

different observing strategies to be traded-off (§7.1.5). For example, averaging more frequent 

zenith observations was found to give less benefit than performing less frequent elevation 

scans. The additional channels in the water vapour band were found to provide little more 

information than using a single channel here to provide information on the Integrated Water 

Vapour (IWV), equivalent to that available from cheaper GPS (Global Positioning System) 

sensors. However, this result depends on the IWV – more humidity information is available 

from the radiometer in warm, humid conditions. 

 

8.5 Towards Operational Use 
This study has highlighted a number of issues that need to be addressed if observations from 

ground-based microwave radiometers are to be used for operational applications. In addition 

to the recommendations mentioned in preceding sections of the conclusions, the paragraphs 

below list the logical order of activities required as part of a follow-on project:  

 

Computational time can present a bottleneck in operational systems using variational 

retrievals from observations made at high time-resolution, and also in their development 

cycle. This should be improved by developing a fast model to calculate the observation vector 

and its Jacobians from the state vector. It may be possible to modify the geometry of the 

RTTOV fast model (§2.5.4) used for satellite applications to suit ground-based instruments. 

 

Quality control is of key importance to operational applications. This should include flagging 

dubious observations, based on their consistency with previous or background values. Tools 

need to be developed to allow routine monitoring of Observations-minus-Background 

residuals as part of the assimilation cycle (§4.6.3). The application of neural network retrievals 

should also include checks that the observations are not outside the range of the training data 

set, as this can induce gross errors (§5.3.4). 

 

To further investigate the performance of microwave radiometers for operational use and the 

benefit of their data to NWP it is recommended that radiometers are operated at different sites 

as part of Integrated Profiling Stations for extended periods (>1 year). This would allow full 

characterisation of the instruments’ biases with respect to an NWP model, validation of the 

forward model and error characteristics. Data sets from such testbed deployments can be 
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used to identify the impact of assimilating the observations on the NWP analysis and, 

ultimately, its forecasts.  

 

These data sets can also be used to develop methods of integrating observations from the 

microwave radiometer with those from other instruments. The variational method provides a 

suitable framework to perform this integration. This has been demonstrated to a limited extent 

by the inclusion of infrared radiances in the observation vector (§4.4) to provide information 

on the cloud-base temperature. This method should be extended to include observations from 

ceilometers, cloud radar and wind profiling radar (§7.2). It is expected that this will help 

improve the vertical resolution of the retrievals. 

 

The results of the trade-off between observing channels and view angles (§7.1.5) led to a 

recommended observing sequence for the Radiometrics TP/WVP-3000 (§7.1.6). Further 

study is needed to confirm the suggestion in this thesis that the channels in the radiometer’s 

low frequency band (22-30 GHz) could be replaced with a high precision GPS receiver 

(§7.1.4.1). This would provide the information on IWV required for temperature profiling, while 

simplifying the radiometer hardware. However, it may result in a reduction of humidity 

information in summer conditions, especially when cloudy. 

 

During the past decade the price of a microwave radiometer has reduced by a factor of ~2 

and technological developments have improved their accuracy and stability. Yet at ~£100k 

each they are still too expensive to deploy in a dense observing network. However, future 

developments in Monolithic Microwave Integrated Circuit (MMIC) technology are expected to 

allow the integration of key components of a 50-60 GHz radiometer into a single package 

(§3.7). It is recommended that these developments are supported, as they would allow mass 

production of radiometers suitable for profiling temperature at much reduced costs in the 

longer term.  

 

Further research is also needed to exploit fully what is potentially the greatest benefit of 

ground-based microwave radiometers – their high time-resolution. A first step has been 

investigated in this thesis by calculating representativeness errors dynamically, based on a 

time series of observations (§4.9.5). Further developments (§7.4) may be achieved through 

different approaches, including using the analysis as the first guess in successive retrievals, 

retrieving sub-gridscale variability, 4-Dimensional Variational assimilation (4D-VAR) of 1D-

VAR retrievals and, ultimately, 4D-VAR of the observations directly into the new generation of 

convective-scale NWP models. Together these offer the possibility of much improved short-

range weather forecasts. 
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Acronyms and Abbreviations 
 

Acronym Meaning Page

CMB Cosmic Microwave Background 20

CSIP Convective Storm Initiation Project 14

DFS Degrees of Freedom for Signal 146

GPS Global Positioning System 157

HATPRO Humidity And Temperature PROfiling radiometer  

from Radiometer Physics 

47

IF Intermediate Frequency 46

ILW Integrated Liquid Water content [g/m2] 9

IR Infrared 47

IWV Integrated Water Vapour content [kg/m2] 9

LIDAR Light Detection And Ranging 156

LN2 Liquid Nitrogen 53

MP3000 Microwave Profiler 3000 model from Radiometrics,  

aka TP/WVP-3000 

45

MPM Millimetre-wave Propagation Model [Liebe and Layton, 1987] 23

NWP Numerical Weather Prediction 1

O-B Observation minus Background residuals 41

pdf Probability Density Function 67

RFI Radio Frequency Interference 62

RH Relative Humidity 34

r.m.s. Root mean square 12

Ros98 Rosenkranz [1998] Millimetre-wave absorption model,  

successor to MPM 

24

RTE Radiative Transfer Equation 19

RTM Radiative Transfer Model 18

SD Standard Deviation 31

TP/WVP-

3000 

Microwave Profiler 3000 model from Radiometrics,  

aka MP3000 

45

TSF Time Structure Function 60

TUC Temperature hUmidity and Cloud experiment, Payerne, 

Switzerland, Winter 2003/04 

14

UM Unified Model  

(Met Office Numerical Weather Prediction system) 

1

VAR Variational Assimilation/Retrieval 11
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Symbols 
 

Symbol Meaning Page

A Analysis Error Covariance Matrix 81

B Background Error Covariance Matrix 71

H(x) Forward Model, mapping state space into observation space 79

H Matrix of Jacobian vectors 67

I The Identity matrix (diagonal terms = 1, off-diagonal terms=0) 81

ΔTmin Minimum detectable change in brightness temperature  

(radiometric resolution) [K] 

57

P(x) Probability Density Function (pdf) of x 67

q Specific humidity [kg/kg] 68

qt Total water content [kg/kg] 68

R Observation Error Covariance Matrix 73

Tb Brightness Temperature [K] – a measure of microwave radiance 19

Tir Infrared Brightness Temperature [K] – measured by IR radiometer 42

TMR Mean Radiative temperature of the atmosphere [K] 51

TCMB Effective Tb of the Cosmic Microwave Background [K] 20

TND Noise Diode Brightness Temperature [K] 50

x State vector, representing profile of atmospheric temperature and 

logarithm of total water (lnqt) 

68

xa State vector of analysis (retrieval) 85

xb State vector of background (prior) 70

yo Observation vector, representing a set of radiances in different channels, 

surface temperature and humidity and infrared Tb 

73

ν Frequency [Hz] 

λ Wavelength [m] 

τ Opacity [Np] 

θ Zenith Angle (θ =0° at zenith) 

 

The standard notation suggested by Ide et al. [1997] has been adopted in this thesis. 
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