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Abstract

Thermodynamic atmospheric profiles have been retrieved from ground-based microwave radiometers during
the Temperature, hUmidity, and Cloud (TUC) profiling campaign. A variety of inversion methods is pre-
sented, in terms of requirements, advantages, and limitations. Results confirm the theoretical expectation that
retrievals’ accuracy and resolution degrade steadily with height up to 3 km, then more rapidly. At higher levels
the retrievals’ accuracy does not improve on that of a Numerical Weather Prediction model, which provides
a background for the variational technique. Most retrieval methods produce a bias in the temperature profile
above 1 km, which may be due to a bias in the absorption model used and/or observations at 51–54 GHz.
Elevation scanning is shown to improve the accuracy and resolution of the retrievals in the boundary layer,
but is limited by technical shortcomings.

Zusammenfassung

Thermodynamische atmosphärische Profile wurden mit bodengestützten Mikrowellenradiometern während
der Temperature, hUmidity, and Cloud (TUC) profiling Kampagne gemessen. Verschiedene Inversionsme-
thoden werden in Bezug auf Anforderungen, Vorteile und Einschränkungen vorgestellt. Die Resultate bestäti-
gen die theoretische Erwartung, dass die Genauigkeit und die Auflösung der gemessenen Profile kontinuier-
lich bis 3 km Höhe schwach und darüber stärker abnehmen. In den höheren Schichten ist die Genauigkeit
der Profile nicht besser als die des numerischen Wettervorhersagemodells, das die Hintergrundfelder für das
erörterte Variationsverfahren bereitstellt. Die meisten Inversionsmethoden führen zu systematischen Fehlern
in den gemessenen Profilen oberhalb von 1 km, was auf systematische Fehler im verwendeten Absorptions-
modell und/oder bei der Messung der Helligkeitstemperatur zwischen 51 und 54 GHz hindeutet. Die zusätz-
liche Einbeziehung von Messungen unterschiedlicher Elevationswinkel verbessern die Genauigkeit und die
Auflösung der abgeleiteten Profile in der planetaren Grenzschicht, wobei die Vorteile durch technische Un-
zulänglichkeiten eingeschränkt sind.

1 Introduction

During the period from December 2003 to February
2004, the Temperature, hUmidity, and Cloud (TUC) pro-
filing campaign (RUFFIEUX et al., 2006) was held at the
MeteoSwiss station in Payerne, Switzerland. A variety
of ground-based instruments, including two microwave
radiometer profilers (MWRP), joined the resident oper-
ational suite. This paper focuses on the evaluation of
temperature and humidity profiles as retrieved from the
measurements collected by the two MWRPs.

Ground-based microwave radiometry represents a
mature technique for the retrieval of atmospheric vari-
ables such as integrated water vapour (IWV), integrated
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liquid water (ILW), and vertical profiles of temperature
(T) and water vapour density (ρ) (WESTWATER, 1993).
An important advantage is that microwave radiome-
ters can be operated in long term unattended mode in
nearly all weather conditions, with temporal resolution
of the order of seconds. These features make MWRPs
very appealing for planetary boundary layer research
(RUFFIEUX et al., 2006), where atmospheric processes
can develop in a time scale of the order of minutes. Also,
MWRP measurements and products are ideal for the
direct assimilation into Numerical Weather Prediction
(NWP) models with the advantage of improving short-
term forecast. As another application, MWRP measure-
ments can be used as a reliable first guess in combined
approaches (KLAUS et al., 2006) or ingested in inte-
grated profiling techniques (LÖHNERT et al. 2004).
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Figure 1: Simulated retrieval accuracy (rms) difference with respect to a control case when elevation scan (black solid line), additional

channels (grey solid), and different absorption model (black dash-dotted) are used. Left: Temperature profiles. Right: Water vapour density

profiles.

As discussed by RODGERS (2000), a variety of tech-
niques can be used to derive atmospheric products from
the measurements of thermal radiation. Each technique
is based on a different approach to the inversion of the
radiative tranfer equation, and thus presents its own re-
quirements, strengths, and limitations.

This work aims to evaluate the available tools for
atmospheric temperature and humidity profiling during
the TUC campaign, and assess the quality of the re-
trievals.

2 Principles, instruments, and datasets

2.1 Basic principles

In the microwave spectral region, the principal sources
of thermal radiation are atmospheric oxygen, water
vapour, and liquid water within clouds. In the range be-
tween 20 and 200 GHz, emission is dominated by the
oxygen complex from 50 to 70 GHz, the isolated oxy-
gen line at 118.75 GHz, the water vapour lines at 22.235
and 183.31 GHz, and the so-called water vapour contin-
uum arising from higher frequency lines contribution.
Hydrometeors forming clouds contribute with emission,
absorption, and scattering, although for lower frequen-
cies and for non precipitating clouds, the scattering ef-
fects can be considered negligible (JANSSEN, 1993).

The intensity of radiation emitted at any altitude is
proportional to the concentration of gases and hydrom-

eteors, and to the local temperature. Thus, the princi-
ple of radiometric retrieval of temperature and humidity
profiles is based on the measurement of radiation gen-
erated at different atmospheric levels. This can be ac-
complished in part by measuring the emitted spectrum
at frequencies conveniently distributed along the wing
of an absorption line/complex, which correspond to dif-
ferent absorption and penetration depth. For instance,
temperature profiles can be estimated from spectral mea-
surements in the 50–60 GHz band, while measurements
around 22 GHz yield information on water vapour pro-
file.

2.2 Instruments

During the TUC campaign, two MWRPs were operated
at the MeteoSwiss station in Payerne, the TP/WVP-3000
and the ASMUWARA. The TP/WVP-3000 is a commer-
cially available 12-channel MWRP built by Radiomet-
rics Corp. Boulder, CO, USA (WARE et al., 2003), while
the ASMUWARA is an unique 9-channel microwave
radiometer built by the Institute of Applied Physics
of University of Bern (MARTIN et al., 2006a). The
TP/WVP-3000 includes a surface temperature, pressure,
and humidity (TPU) sensor, while both instruments are
also equipped with an infrared channel for cloud base
temperature monitoring.

The microwave channels of both MWRPs are listed
in Table 1. Channels in the 20–30 GHz range are valu-
able for IWV and ILW retrievals, but provide limited
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Table 1: Nominal central frequency (fo), bandwidth (B), scanned elevation (θ ) and azimuth (α) angles for TP/WVP-3000 and AS-

MUWARA during TUC.

TP/WVP-3000 ASMUWARA 

fo[GHz] B[GHz] θ[deg] α[deg] fo[GHz] B[GHz] θ[deg] α[deg] 

22.235 0.15 0 – 18.750 0.30 0 0 

23.035 0.15 60  22.200 0.76 15 30 

23.835 0.15 70  23.600 0.90 30 60 

26.235 0.15 75  31.500 1.10 40 90 

30.000 0.15 –75  52.500 0.59 50 120 

51.250 0.15 –70  53.940 0.12 60 150 

52.280 0.15 –60  55.260 0.52 70 180 

53.850 0.15   57.200 1.30 75 210 

54.940 0.15   151.000 4.00 80 240 

56.660 0.15     85 270 

57.200 0.15      300 

58.800 0.15      330 

 

profiling capability because they are highly correlated.
Conversely, 50–60 GHz channels show a spectral-to-
vertical mapping. In fact, opaque channels (e.g. 57.2
GHz) are mostly sensitive to the lower atmospheric lev-
els, while more transparent channels (e.g. 52.5 GHz),
are also sensitive to higher levels. The sensitivity nearly
vanishes above 7 km, indicating that estimates of tem-
perature profiles above that level rely almost uniquely
on climatologic correlation with the lower troposphere.
The ASMUWARA 151 GHz channel presents enhanced
sensitivity to moisture and liquid water, which is use-
ful for retrievals in dry conditions, at the expense of
larger scattering contribution and higher degree of non-
linearity during humid and cloudy conditions. However,
the ASMUWARA 151 GHz channel was not used for the
retrievals shown in this paper, besides the simulations in
Figure 1, discussed later.

2.3 TUC dataset

The TUC campaign provided about three months of ra-
diometric measurements and retrievals under a fairly
large range of environmental conditions (T from –10 to
13◦C, IWV from 3 to 22 kg/m2). As reported in Table
1, ASMUWARA repeatedly observed the atmosphere at
10 elevation and 12 azimuth angles, scanning the up-
per hemisphere every 15 minutes. The TP/WVP-3000
scanned 5 elevation angles every 5 minutes. Although an
azimuth steering device is commercially available from
the manufacturer, this was not installed on this unit. Due
to malfunction of the local oscillator during the cam-
paign, ASMUWARA channels in the oxygen band suf-
fered of calibration difficulties that made 52.50, 53.940,
and 55.260 GHz unusable (MARTIN et al., 2006a). Be-
sides this, CIMINI et al. (2006), investigated the agree-
ment between brightness temperature (Tb) measured by
the two MWRPs, and found agreement within the expec-
tations in three of the four considered pairs of channels.

For the remaining pair (22.2 GHz), they found about
1.7 K bias; any difference in Tb measurements is likely
to propagate in the retrievals, so this bias must be kept
in mind when comparing humidity profiles from the two
instruments.

3 Retrieval techniques

A variety of techniques can be used to derive informa-
tion on the atmospheric state vector x, from the obser-
vation vector y, which in our case represents radiomet-
ric and TPU measurements. In fact, the Forward (F)
problem, represented by the Radiative Tranfer Equation
(RTE), is analytically solvable and in its discrete form
can be expressed by:

y = F(x) (3.1)

Conversely, because only a finite number of highly cor-
related observations affected by measurement error (ε)
are available, the inverse problem of estimating x from
y

x̂ = R(y+ ε) (3.2)

accepts non-unique solutions and thus is said to be
ill-posed. In this regard, the observations act as con-
straints that need to be coupled with auxiliary informa-
tion, known a priori, to provide a meaningful solution.
Equation 3.2 is general, and each technique is based on
a different approach to the solution. In the following, we
summarize the main features of the techniques applied
to the radiometric observations during TUC.

3.1 Measurement-based regression

In the case an a priori dataset of simultaneous state
vectors x and observations y is available, it is possi-
ble to solve Eq. 3.2 through empirical regression. In
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the assumption of moderate non-linearity of the forward
model, Eq. 3.1 can be approximated by means of first-
order Taylor expansion:

y = yo +K(x−xo)+ ε (3.3)

where K represents the Jacobian matrix (K= δy/δx)
evaluated at the expansion point xo. A solution for Eq.
3.2 in the linear case is given by RODGERS, (2000):

x̂ = xo +(B−1 +KTE−1K)−1KTE−1(y−yo) (3.4)

where B and E are the error covariance matrices of the
state and observation vectors, and T and −1 are the ma-
trix transpose and inverse, respectively. This equation
can be replaced by:

x̂ = xo +CxyC−1
yy (y−yo) (3.5)

where Cxy and Cyy are extracted from the a priori data
set and represent respectively the covariance matrix of
the state vectors x and the simultaneous observations y,
and the autocovariance matrix of y. If K accurately de-
scribes F, and the statistics from the a priori data set well
represent the covariance matrices B and E, then Eq. 3.5
and Eq. 3.4 are identical. In the following we will refer
to this measurement-based regression as M-REG.

3.2 Simulation-based regression

A slightly different approach with respect to the one
in section 3.1 relies on the training of regression op-
erators with a simulated, rather than measured, a pri-

ori dataset. This implies that a RTE solver is used to
process a statistically significant set of atmospheric vec-
tors x to produce synthetic observation vectors y and er-
ror ε that emulate the available hardware. The ensemble
of atmospheric vectors x can be provided by historical
dataset of radiosondes, when available, or by a collec-
tion of NWP outputs. This simulation-based regression
will be referred to as S-REG.

3.3 Neural networks

A rather new approach for the solution of Eq. 3.2, con-
sists in artificial Neural Networks (NN). The difference
with respect to regression in sections 3.1–3.2 is basi-
cally that the operator is now a NN instead of a ma-
trix of linear coefficients. SOLHEIM et al. (1998) car-
ried out an analysis on inversion methods based upon
synthetic data, and reported that NN outperforms other
methods for retrieving water vapour and temperature
profiles from radiometric data. Therefore, the software
provided with the TP/WVP-3000 uses NN method. The
algorithm uses standard feed forward with input, hid-
den, and output layers with full connection between ad-
jacent layers. A standard back propagation algorithm is

used for training, and a standard feed-forward is used
for profile determination. An alternative version of the
NN algorithm uses observations during elevation scans
to increase the resolution in the boundary layer. We will
refer to this last one as NNelev.

3.4 Optimal estimation method

Another technique for solving Eq. 3.3 is the Optimal es-
timation Method (OEM) (RODGERS, 2000). In this tech-
nique, an initial guess, based on a priori information, is
given in input to Eq. 3.4 and then iterated until the solu-
tion meets a convergence criterion. Successive approxi-
mations are implemented as:

x̂i+1 = xo +
(

B−1 +KT
i E−1Ki

)−1

KT
i E−1 [(y−F(x̂i))+K(x̂i −xo)]

(3.6)

where x̂i and x̂i+1 are the state vector at successive steps
of the iteration, Ki and F(x̂i) are the Jacobian matrix and
the forward model operator evaluated at the state vec-
tor x̂, and xo is the initial guess state vector. Eq. 3.6 is
applied until x̂i+1 does not significantly differ from x̂i.

3.5 One dimensional variational
assimilation retrieval

One Dimensional Variational Assimilation Retrieval
(1D-VAR) is an optimal estimation method used here
to retrieve vertical profiles of temperature and total wa-
ter to be consistent with a given set of observations,
and a background field from a short-range NWP fore-
cast. This method retrieves the state of the atmosphere
that is statistically most consistent with the observations
and background, given the error characteristics of each.
In fact, 1D-VAR is equivalent to a Bayesian approach
where the estimate is the maximum a posteriori proba-
bility state vector. Our implementation is similar to the
Integrated Profiling Technique described by LÖHNERT

et al. (2004). The key differences are highlighted below.
The state vector, x, is defined as the temperature

and total water on the lowest 28 levels of the Met Of-
fice mesoscale version of the Unified Model. The back-
ground information is provided by the forecast of the
same model initiated 3–9 hours earlier (T+3 to T+9 fore-
cast), interpolated to the coordinates of Payerne, valid
within 30 min of the observations. This specifically ex-
cludes the influence of the radiosondes used for valida-
tion. In this study, the humidity components of the state
vector are defined as the natural log of total water, lnqt ,
where qt is the total of the specific humidity and liquid
water content. This control variable is a modified version
of that suggested by DEBLONDE and ENGLISH (2003),
with a smooth transfer function between water vapour
for qt/qsat < 90% and liquid water for qt/qsat > 110%
(where qsat is the specific humidity at saturation). The
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use of total water has the advantage of reducing the di-
mension of the state vector, enforcing an implicit super-
saturation constraint and correlation between humidity
and liquid water. The use of the logarithm creates error
characteristics that are more closely Gaussian and pre-
vents unphysical retrieval of negative humidity.

The Background Error Covariance, B, was calculated
from the differences between the radiosondes and back-
ground for the whole period of TUC. This method pro-
vides a worst-case estimate of B as it includes contribu-
tions from the radiosondes and their representativeness
errors.

The observation vector, y, is defined as a vector of the
zenith brightness temperatures in the 12 channels of the
TP/WVP-3000 microwave radiometer, plus the temper-
ature and specific humidity measured by PTU sensors.
The Observation Error Covariance, E, has contributions
from the radiometric noise, forward model, and repre-
sentativeness errors. For a discussion of these contribu-
tions, see HEWISON et al. 2006.

To speed up the calculation, a Fast Absorption Pre-

dictor model is used to calculate the absorption in each
level below 100 hPa as a third order polynomial func-
tion of pressure, temperature and specific humidity, fol-
lowing LÖHNERT et al. (2004). This introduces an ad-
ditional random error in the calculation of Tb approxi-
mately as large as the forward model error contribution.
The Jacobian matrix K is calculated by perturbing each
level of the state vector x by 1 K in temperature or 0.001
in lnqt . K is only calculated for levels between the sur-
face and 8 km, corresponding to the maximum range of
likely impact from the radiometer data. For levels above
this, K= 0. Thus, using Eq. 3.6, we adopt the follow-
ing criterion to decide whether the iteration has reached
convergence (RODGERS, 2000):

[

F(x̂i+1)−F(x̂i)
]T

S−1
δy

[

F(x̂i+1)−F(x̂i)
]

<< d (3.7)

where d is the dimension of y, and Sδy is the covariance
matrix between y and F(x̂i ). Upon convergence the re-
trieved state vector,x̂, is tested for statistical consistency
with xo and B by calculating the χ2 value:

χ2 = (x̂− x̂o)
T

B−1 (x̂− x̂o) (3.8)

Retrievals with χ2 > 20 were rejected, based on the ex-
pected distribution of χ2 for 99 % of a population with 8
degrees of freedom. However, the choice of χ2 threshold
was found not to be critical, as it had a small influence
on the statistics of the retrievals.

3.6 Requirements, advantages, and
limitations

The described techniques present different require-
ments, strengths, and limitations. Requirements for M-
REG are quite demanding. In fact, apart from sites

where simultaneous radiosondes and ground-based ra-
diometric measurements have been routinely performed,
it is uncommon to have such an a priori dataset avail-
able. Conversely, techniques based on simulations (as
S-REG, NN, OEM, 1D-VAR) do not need past radio-
metric measurements, but require a priori atmospheric
profiles, instrument error characteristics, and an RTE
model. For S-REG and NN, the a priori set is used for
training. However, it is important to ensure the training
set covers the expected range of conditions, specially for
NN, whose response is unpredictable outside the train-
ing range. Differently, OEM and 1D-VAR use a single
first guess a priori profile and an estimate of its covari-
ance, which can be extracted from the a priori set. Meth-
ods based on a training require one-time computational
efforts to fit the operators, but then provide real-time re-
trieval. Conversely, methods based on iterative solution
may require longer computational time, and research ef-
forts to develop faster models for F(x) and K. The 1D-
VAR requires also an NWP output to be used as the first
guess.

Among the advantages, M-REG is independent of at-
mospheric absorption models and it implicitly includes
any systematic error in the observations, assuming they
are stationary. In this regard, M-REG guarantees the
best linear unbiased estimation with respect to radioson-
des. This is valuable, although sometimes could result
in a limitation because it may hide radiosonde sensor
errors. The major drawback is that regression operators
are strongly linked to the environment where a priori

measurements were taken, and any use in other environ-
ments will likely result in retrieval biases. Conversely,
the advantages of simulated-based techniques (S-REG,
NN, OEM, 1D-VAR) are in the flexibility that they of-
fer. In fact, simulated a priori dataset can be generated
virtually for any site and instrument, using radiosondes
or NWP output, and RTE models. On the other hand,
an important limitation for these techniques consists in
the dependency on the atmospheric absorption model,
which cause spectroscopic uncertainties to propagate
into the retrievals. In addition, any systematic error in
the radiometric measurements is not taken into account,
unless it is known and introduced explicitly.

An advantage of iterative and neural techniques (as
NN, OEM, 1D-VAR) is to offer better performances for
the solution of non-linear problems, particularly impor-
tant for humidity retrievals. Unlike other methods, OEM
and 1D-VAR are physically consistent, which in this
context means that the solution is known to reproduce
the observation vector used in the retrieval within the
measurement accuracy (LÖHNERT et al., 2004). How-
ever, there are cases when the solution does not con-
verge. For example, this often happens in 1D-VAR when
the forecasted background state is far from the truth,
as when the NWP model has mis-timed a frontal ap-
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Figure 2: Temperature profile retrieval bias (left) and std (right) with respect to radiosondes (estimate minus in situ). All techniques are

applied on TP/WVP-3000 measurements.

proach. We recognize that it is difficult for OEM/1D-
VAR retrievals to have an impact in these cases, as the
assumption of Gaussian errors is no longer valid, and
the resulting retrieval is likely to fail quality controls.
Besides this, an advantage of 1D-VAR is to initiate the
iteration with a background state that is most of the time
more representative than a climatological mean, used in
other techniques. Moreover, the 1D-VAR can be natu-
rally extended to include other observation with differ-
ent features. These characteristics make this and simi-
lar techniques very appealing for integrated approaches
(LÖHNERT et al., 2004).

For the TUC campaign, the S-REG was trained us-
ing a 10-year set of winter radiosondes launched in Pay-
erne. The absorption model described in LILJEGREN

et al. (2005) was used, adopting the Equivalent Mono-
chromatic Frequency (EMF) estimated by CIMINI et
al. (2006) to emulate band-averaged Tb. The NN was
trained using the same 10-year set, processed with the
LILJEGREN et al. (2005) absorption model at nominal
central frequencies. For OEM, xo and B were estimated
from monthly means and covariance extracted from a
1-year dataset of radiosondes launched in Payerne. For
the parameterisation of F, the forward model described
in ROSENKRANZ (1998) was used, while K was eval-
uated numerically by small perturbations (Martin et al.,
2006b). For M-REG, specific operators had to be com-
puted using radiosonde and radiometric measurements
launched during TUC. In fact, due to different environ-
mental conditions, operators based on historical datasets

collected at the German Weather Service observatory in
Lindenberg (GÜLDNER and SPÄNKUCH, 2001) could
not be used in Payerne. In fact, simulation tests showed
mean Tb differences as large as 8 K between the two
sites. To leave an independent set for retrieval compari-
son, the dataset was divided into two parts; only mea-
surements collected during odd-numbered days were
used for training of the regression operators.

4 Considerations on expected accuracy

Besides the inversion method, there are other factors
determining the retrieval accuracy, defined as the root-
mean-square (rms) of estimated minus true profile. For
example, in Fig.1 we show simulations of the expected
retrieval accuracy difference with respect to a control
case (S-REG), when (1) elevation scan observations are
used, (2) the number of channels is increased, (3) the
synthetic test set is produced with a different absorption
model. Negative numbers correspond to a decrease in
rms (i.e. better retrieval with respect to the control case).

In exercise (1), we simulated TP/WVP-3000 mea-
surements at the scanning angle in Table 1 and we
used this set as input of a variation of S-REG that was
trained with observations simulated at the same angles
(S-REGelev). As expected (WESTWATER, 1993), Fig.1
shows that the use of elevation scan improves both the
temperature and the humidity retrievals in the first kilo-
metre, but has smaller impact at higher levels.
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In exercise (2), we simulated a Super Microwave Ra-
diometer (SMWR) to exploit the benefits of integrating
the two MWRPs deployed during TUC. Thus, we com-
bined in the SMWR all the 12 TP/WVP-3000 channels,
plus 2 (18 and 151 GHz) from ASMUWARA. As shown
in Fig.1, the benefits are small, if any, because the 2
channels add little information to the other 12. In the
case of ρ profiles, we see a slight decrease in accuracy
in the lower 500 m. This is probably due to the fact that
linear regression does not handle properly the highly non
linear behaviour of 151 GHz Tb. If we limit the test set
to dry cases, where the linearity assumption is valid, we
expect the 151 GHz channel to contribute positively.

In exercise (3), we generated the training and test sets
using two different absorption models (training: LILJE-
GREN et al., 2005; test: LIEBE et al., 1993). For tem-
perature profiles, the contribution of absorption model
uncertainties is rather small (within 0.1 K) in the lower
3 km, although it increase rapidly above that level. This
is consistent with the fact that absorption models agree
closely in the 55–59 GHz range but diverge in the 51–
54 GHz range (HEWISON et al., 2006). For humidity
profiles, the retrieval uncertainties in the lower 1.5 km
are of the same magnitude of the improvements brought
by elevation scan. Thus, improvements in the theoretical
knowledge of the spectroscopy seem to be of the same
importance, at least, as hardware developments. There-
fore, we join other investigators (HEWISON et al., 2006)
in encouraging further laboratory studies to reduce ab-
sorption model uncertainties in the microwave spectral
region.

5 Results during TUC

To assess the quality of the retrievals, the available tech-
niques described in section 3 were applied to the ra-
diometric and surface measurements collected during
the TUC campaign. In particular, NN and NNelev are
imbedded in the proprietary software associated with the
TP/WVP-3000. Additionally, individual customers de-
veloped their own software, this being the case for M-
REG (DWD, Lindenberg) and 1D-VAR (UK MetOffice,
Exeter). The OEM method was implemented by the de-
velopers of ASMUWARA for its retrievals (MARTIN et
al., 2006a, b), while S-REG and S-REGelev were im-
plemented exclusively for this experiment. Therefore,
NN, NNelev, M-REG, S-REG, S-REGelev, and 1D-
VAR were applied to TP/WVP-3000 observations, while
OEM, S-REG, and S-REGelev to ASMUWARA mea-
surements. A tentative integration of the two instruments
(SMWR) was done with S-REG. The most relevant re-
sults are illustrated below.

5.1 Method

The retrieved profiles were compared with the set of
Meteolabor SRS 400 radiosonde observations launched

during TUC. The accuracy of these measurements was
investigated using high quality sensors as reference, and
estimated to be 0.2 K for temperature and 0.15 g/m3 for
humidity profiles (RUFFIEUX et al., 2006). Both clear-
and cloudy-sky periods were used, while rainy cases
were screened out using the rain sensor on the TP/WVP-
3000. Symmetric views during each elevation scan were
averaged in order to reduce the impact of random at-
mospheric inhomogeneity as well as systematic error
on pointing angle. An additional screening, discussed in
section 5.5, was necessary to identify cases with highly
inhomogeneous sky that influenced the retrievals using
elevation observations. When available, retrieved pro-
files were averaged for the period extending from 5 min
before to 25 min after the launch, roughly the time nec-
essary for the balloon to travel the lower troposphere.
We reduced the set to be valid as an independent test for
all techniques (e.g. cases used in M-REG training were
excluded), leaving a sample of 65 radiosondes.

5.2 Temperature profiles

In Figure 2, the temperature retrieval accuracy is eval-
uated in terms of mean (bias) and standard deviation
(std) of the retrieval minus radiosonde profile differ-
ence. Only results from TP/WVP-3000 are shown, be-
cause ASMUWARA 50–55 GHz channels did not work
properly during the experiment. All the techniques based
on a synthetic training (NN, NNelev, S-REG, and S-
REGelev) show a negative bias between 1.5 and 5 km.
This is likely to be related to the 1–2 K inconsistency of
the observed and modelled Tb in the 51–54 GHz chan-
nels (HEWISON et al., 2006). This bias was found to
be larger in colder/drier conditions. Thus, the bias in
temperature profile may be caused by a spectroscopic
bias in the absorption models. The two techniques us-
ing elevation data (NNelev and S-REGelev) show larger
bias than the correspondent techniques using zenith ob-
servations only (NN and S-REG). This agrees with the
previous considerations, because absorption model un-
certainties have larger impact on low elevation angles.
Also, NNelev and S-REGelev show about 1 K bias in
the retrieved profile between 0.5 and 1.5 km that was
not present in NN and S-REG. This could be related to
the positive bias at low elevation found in 53.85 GHz
(HEWISON et al., 2006), as this frequency is sensitive
to lower altitudes. M-REG retrievals show the smallest
bias, limited within 0.5 K up to 5 km. This was expected,
as the M-REG is not affected by absorption models or
instrumental bias, providing the best unbiased linear es-
timate with respect to radiosondes.

The right panel of Fig. 2 shows the retrieval std,
which would indicate the retrieval accuracy in the as-
sumptions of zero-bias and ideal radiosonde measure-
ments. Most of the considered techniques show very lit-
tle differences, although we can see a slight improve-
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Figure 3: Water vapour profile retrieval bias (left) and std (right) with respect to radiosondes (estimate minus in situ). OEM is applied on

ASMUWARA measurements; all other techniques are applied on TP/WVP-3000 measurements.

ment related to elevation-based techniques in the lower
1 km. This confirms the theoretical results in Fig.1, al-
though the model-related bias at the same levels would
dominate.

Concerning 1D-VAR, the bias is also affected by the
absorption model error, although the std improves sig-
nificantly, especially above 2 km. This is due to the
choice of background atmospheric state vector. In fact,
1D-VAR initiates the iteration with a forecast state vec-
tor, which is usually more representative of the actual
state than the climatologic mean used in other tech-
niques. The improvement is particularly evident above
the first kilometre, where the instrument sensitivity starts
to fade, and the background state has more impact on the
retrieval. Overall, performances for 1D-VAR tempera-
ture retrievals from TP/WVP-3000 measurements are
similar to those obtained by LILJEGREN et al. (2005)
by combining TP/WVP-3000 with satellite-based re-
trievals.

5.3 Humidity profiles

Similar to Figure 2, Figure 3 shows the accuracy for wa-
ter vapour density retrievals. Note that we add the OEM
retrievals obtained from ASMUWARA data. The bias
for NN, S-REG, and M-REG are rather in accordance,
especially above 1 km. Even below that, differences are
within ±0.1 g/m3. Bias from OEM is of the same or-
der, but of opposite sign. As discussed in CIMINI et al.
(2006), 22.2 GHz channels in TP/WVP-3000 and AS-
MUWARA showed about 1.7 K bias during TUC. This,

together with the different choice of absorption model,
is likely the explanation of the opposite sign.

As predicted by simulations in Figure 1, the obser-
vations at different elevation used in S-REGelev bring
some improvement with respect to S-REG, especially in
the vertical range 0.2–2 km. However, this is not con-
firmed by the NNelev technique, which actually per-
forms worse than the respective NN. This feature is dis-
cussed in more detail in section 5.5.

In contrast to the temperature, for humidity retrievals
1D-VAR is not performing better than other techniques.
This might be due to the choice of total water as the hu-
midity component of the state vector. In fact, this choice
causes cases with poorly retrieved cloud liquid to dom-
inate the statistics. This may be improved by applying
a minimisation technique more appropriate to moder-
ately non-linear problems. It is also hoped that this will
improve by the addition of infrared radiometer and/or
ceilometer observations. The bias on the humidity re-
trievals is, however, satisfactory.

5.4 Vertical resolution

Another term to evaluate is the vertical resolution
achieved for the retrieved profiles. In fact, the verti-
cal resolution of passive ground-based retrievals of at-
mospheric profiles depends on many factors, including
the spectral and angular information, the consistency of
the radiative tranfer, and the quality of the background
state vector. Here we adopt the definition proposed by
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Figure 4: Vertical resolution for temperature (left) and water vapour (right) profile retrievals. All techniques are applied on TP/WVP-3000

measurements.

SMITH et al. (1999), which makes use of the inter-level
error covariance. Results obtained applying this method
to retrievals from different techniques are shown in Fig-
ure 4. For temperature profiles (left panel), the verti-
cal resolution of all methods increases approximately
linearly with altitude as half the height from the sur-
face to 3 km. Above this, the resolution of 1D-VAR re-
trievals continues to increase steadily, while other meth-
ods increase more rapidly. Elevation scanning slightly
improves the resolution in the boundary layer, but also at
some higher levels. Overall, 1D-VAR provides a vertical
resolution better than 1 km up to 5 km. Similar results
were obtained by LILJEGREN et al. (2005) by combin-
ing TP/WVP-3000 with satellite retrievals.

For the humidity profiles (right panel), all techniques
show very similar resolution. As for the retrieval std, S-
REGelev demonstrates the improvements brought by el-
evation scanning, showing a slightly better resolution in
the lowest kilometer when compared to S-REG. Again,
this is not confirmed by NNelev. Especially in the lower
levels, where elevation observations should give a pos-
itive impact, NNelev shows a resolution significantly
worse with respect to NN. In the next section we dis-
cuss this issue in more detail.

5.5 Quality control for elevation scan

As anticipated, results in Figures 2–4 were obtained af-
ter a screening identifying cases with highly inhomoge-
neous sky that influenced the retrievals using elevation
observations. In fact, the screening based on the rain

sensor removes only cases in which precipitation occurs
over the instrument. However, clouds and rain located
away from the zenith direction create a inhomogeneous
scenario that can result in an asymmetry in elevation
scan observations. Both NNelev and S-REGelev rely on
homogeneous atmospheric stratification and average to-
gether the observations taken at two sides in order to
reduce the impact of any systematic or random asym-
metry. Nevertheless, an inhomogeneous scenario may
cause Tb differences as large as 100 K at symmetric
angles, and a simple average may be misleading. This
is especially true for NNelev, because of its non-linear
characteristics. A way to monitor the atmospheric ho-
mogeneity along the direction of scanning is to intro-
duce an equivalent zenith Tb (EZTb), which corresponds
to the Tb at different elevation angles mapped into opac-
ity (via an estimate of the mean radiating temperature
(WESTWATER, 1993)), scaled by the corresponding air
mass, and then converted back to Tb. For an ideal homo-
geneously stratified atmosphere, the standard deviation
of EZTb (STDEZTb) of each scan would be within the
radiometer noise level, while in a real scenario this quan-
tity tends to increase for increasing asymmetry. There-
fore, a check on the STDEZTb of each scan is useful
to detect asymmetric conditions that may confuse an
elevation-based algorithm. As an example, in Figure 5
we show the effect of the STDEZTb screening applied to
both NNelev and S-REGelev. Here we use the STDEZTb

at 30 GHz, this frequency being rather transparent to
atmospheric gases but fairly sensitive to liquid water,
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Figure 5: Standard deviation (left) and resolution (right) for NNelev and S-REGelev before and after the STDEZTb screening. Top panels

show temperature retrievals, bottom panels humidity retrievals. Both techniques are applied on TP/WVP-3000 measurements.

with a threshold of 2 K, which represents a loose con-
straint for clear sky while it is relatively restrictive for
cloudy conditions. As evident in Figure 5, the STDEZTb

screening has little impact on the temperature profile re-
trievals at lower altitude, although both accuracy and
resolution slightly improve for higher levels. Informa-

tion on temperature at these levels is provided by low ab-
sorption channels in the oxygen band, which are affected
by liquid water emission and hence by cloud/rain inho-
mogeneities. Conversely, the STDEZTb screening show
large impact on the NNelev humidity profile retrievals.
Especially in the lower kilometers, both accuracy and
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resolution improve substantially after the screening of
highly asymmetric cases. On the other hand, the effect
on S-REGelev is much smaller due to its linear response.

Thus, the profiling performances of elevation-based
algorithms, in particular non-linear ones such as
NNelev, largely depend on the level of atmospheric ho-
mogeneity. Therefore, we strongly recommend the use
of a quality control for the elevation scan, as for exam-
ple the one discussed.

6 Discussion and conclusions

This paper describes some of the tools for atmospheric
temperature and humidity profiling available during the
TUC campaign. Two microwave radiometers and a va-
riety of inversion methods are introduced and character-
ized. The achieved accuracy of the retrievals is demon-
strated in terms of bias, std, and vertical resolution with
respect to simultaneous radiosonde observations. The
results confirm theoretical expectations that most of the
information from ground-based radiometers is concen-
trated in the lowest 3 km. The temperature and humid-
ity retrieval accuracy is best near the surface and de-
grades with height to σT < 1.5 K, σρ < 0.7g/m3 by 3
km, respectively. Similarly, the vertical resolution de-
grades linearly with height, z, as approximately 0.44z
for temperature and 0.3+0.24z for humidity from 0–
3 km. Above 3 km, the retrieval accuracy and resolu-
tion degrade rapidly for all techniques, except 1D-VAR,
which takes this information from a NWP short range
forecast. This highlights the likely impact of these ob-
servations in NWP.

In the lowest 1 km, the bias in the temperature and
humidity retrievals of most methods is acceptable at
< ±0.5 K and < ±0.2 g/m3, respectively. However, at
higher levels, most temperature retrievals showed a neg-
ative bias of 1–2 K, which was found to be larger in
colder/drier conditions. This is likely to be related to
difference found between modelled and observed Tb in
the 51–54 GHz channels (HEWISON et al., 2006), which
may arise from spectroscopic errors in the absorption
models. This is supported by the fact that the technique
which does not rely on absorption models does not show
the same bias.

Elevation scanning is expected to improve the accu-
racy and resolution of retrieved profiles in the bound-
ary layer. Although we show some improvements, these
are limited by atmospheric inhomogeneity, absorption
model uncertainty, and mechanical limitations. For ex-
ample, elevation scanning improves the std of a regres-
sive method, but increases its bias. Furthermore, a qual-
ity control of the atmospheric homogeneity seems to be
crucial for a non-linear approach, and thus it is strongly
recommended.

Optimal Estimation methods, such as 1D-VAR, of-
fer a convenient way to combine observations from
microwave radiometers with a background (e.g. from
NWP) accounting for their error characteristics. This
also allows integration of data from other instruments
as described by LÖHNERT et al. (2004). Currently the
humidity retrievals are dominated by poorly retrieved
liquid water, but may be improved using a non-linear
minimization. We plan to extend this method to include
infrared radiometer observations and refractive index
gradients derived from collocated wind profiling radar
(KLAUS et al., 2006). It is hoped that this will improve
the accuracy and vertical resolution of the humidity re-
trievals.
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