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Abstract— A variational retrieval method is described to 

combine observations from microwave and infrared radiometers 
and surface sensors with background from short-range 
Numerical Weather Prediction (NWP) forecasts in an optimal 
way, accounting for their error characteristics. The required 
forward models are described. Observation errors are found to 
be dominated by representativeness, due to their sensitivity to 
atmospheric variability on smaller scales than the NWP model 
gird. Their effect can be reduced by evaluating this dynamically. 
Profiles of temperature and total water content are retrieved 
from synthetic data using Newtonian iteration. An error 
analysis shows these are expected to improve mesoscale NWP, 
retrieving temperature profiles with an uncertainty of <1 K up 
to 5 km and humidity with <40% up to 3 km, albeit both with 
poor vertical resolution. A cloud classification scheme is 
introduced to address convergence problems and constrain the 
retrievals. This Bayesian method can be extended to form a 
basis for future Integrated Observing Systems. 
 

Index Terms—Atmospheric measurements, Microwave 
radiometry, Remote sensing, Variational methods. 
 

I. INTRODUCTION 
he retrieval of temperature and humidity profiles from 
passive ground-based sensors is an ill-posed problem, 

because there are an infinite number of atmospheric states 
that can produce a given observation vector within its 
uncertainty. This can be resolved by the addition of 
background data. Variational retrievals provide an optimal 
method of combining observations with a background in the 
form of a short-range forecast from a Numerical Weather 
Prediction (NWP) model which accounts for the assumed 
error characteristics of both. For this reason they are often 
referred to as Optimal Estimation retrievals. This is similar to 
the Integrated Profiling Technique [1], but takes its 
background from an NWP model instead of radiosondes and 
uses different control variables to concentrate on retrieving 
profiles of atmospheric temperature and humidity. 

The variational retrieval is performed by adjusting the 
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atmospheric state vector, x, from the background state, xb, to 
minimize a cost function of the form [2]: 
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where B and R are the error covariance matrices of the 
background, xb, and observation vector, y, respectively, H(x) 
is the forward model operator and T and -1 are the matrix 
transpose and inverse, respectively, using the standard 
notation of [3]. 
 

II. BACKGROUND DATA AND STATE VECTOR 
The mesoscale version of the Met Office Unified Model is 

used to provide background data for the retrievals in the form 
of profiles of temperature, humidity and liquid water. The 
model grid points (12 km apart) are interpolated to the 
position of the observations. This model is initiated every six 
hours, including data from radiosonde stations. A short-range 
forecast (T+3 to T+9 hr) is used for the background, as would 
be available to operational assimilation schemes. This is 
independent of any radiosondes launched at observation time, 
which may be used to validate the retrievals. The background 
was found to have a consistent bias with respect to co-located 
radiosondes used in this study. This is believed to be due to 
the mesoscale model’s limited representation of the 
orography. This bias was corrected empirically prior to using 
the background in the retrieval. 

The state vector, x, used in the retrievals is defined as the 
temperature and total water on the lowest 28 model levels. 
These extend up to 14 km, but are concentrated near the 
surface, where most of the radiometer’s information is. 

In this study the humidity components of the state vector 
are defined as the natural log of total water, lnqt. (q is the 
specific humidity.) This control variable is a modified version 
of that suggested in [4], with a smooth transfer function 
between water vapor for qt /qsat < 90% and liquid water for 
qt /qsat >110% (where qsat is q at saturation.) The condensed 
part of the total water is further partitioned between liquid 
and ice fractions as a function of temperature, following [5]. 
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This inhibits the formation of liquid water at very low 
temperatures. The use of total water has the advantage of 
reducing the dimension of the state vector, enforcing an 
implicit super-saturation constraint and correlation between 
humidity and liquid water. The use of the logarithm creates 
error characteristics that are more closely Gaussian and 
prevents unphysical retrieval of negative humidity.  

The background error covariance, B, describes the 
expected variance at each level between the forecast and true 
state vector and the correlations between them. In this work, 
B was taken from that used to assimilate data from satellite 
instruments operationally at the Met Office. It could also be 
calculated from the differences between the  radiosondes and 
background from the mesoscale forecasts over an extended 
period. This B is defined in terms of temperature and lnq. It 
is assumed that the error characteristics of lnqt are similar to 
those of lnq as liquid water is not measured by the 
radiosondes. This method provides a worst-case estimate of B 
as it includes contributions from the radiosonde error and the 
representativeness errors. The diagonal components of B are 
shown for reference in Fig. 4. 

 

III. OBSERVATIONS 
This study uses observations from the Radiometrics 

TP/WVP-3000 microwave radiometer [6]. This has 12 
channels: seven in the oxygen band 51-59 GHz, which 
provide information primarily on the temperature profile and 
five between 22-30 GHz near a water vapor line, which 
provide cloud and humidity profile information. This 
radiometer includes sensors to measure pressure, temperature 
and humidity at ~1 m above the surface. The pressure is taken 
as a fixed reference from which geopotential height is 
calculated at other pressure levels via the hydrostatic 
equation. The instrument’s integral rain sensor is used to 
reject periods which may be contaminated by scattering from 
precipitation, as this is not included in the forward model and 
emission from raindrops on the radome, which may bias the 
calibration. This radiometer incorporates an optional zenith-
viewing infrared radiometer (9.6-11.5 µm) to provide 
information on the cloud base temperature. 

In this study the observation vector, y, is defined as a 
vector of the zenith brightness temperatures (Tb) measured by 
the radiometer’s 12 channels, with additional elements for the 
surface temperature and humidity (converted to lnq) and the 
infrared brightness temperature (Tir). 

The observation error covariance, R, has contributions 
from the radiometric noise (E), forward model (F) and 
representativeness (M) errors ( R = E + F + M ).  

The radiometric noise, E, can be evaluated as the 
covariance of the Tbs measured while viewing a stable scene 
(such as a liquid nitrogen target) over a short period (~30 
min). This term is approximately diagonal – i.e. the channels 

are independent – with diagonal terms ~(0.1-0.2 K)2.  
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Fig. 1. Diagonal components of Observations Error Covariance Matrix, R. 

The representativeness error, M, allows for the 
radiometer’s sensitivity to fluctuations on smaller scales than 
can be represented by the NWP model. It is possible to 
estimate M by studying the fluctuations in the radiometer’s 
signal on typical time scales taken for atmospheric changes to 
advect across the horizontal resolution of the NWP model. In 
the case of the mesoscale model with a 12 km grid, a time 
scale of 1200 s was chosen to represent a typical advection 
timescale. The r.m.s. difference in brightness temperatures 
measured over this time scale was used to calculate M. This 
showed strong correlation between those channels sensitive to 
liquid water, water vapor and temperature, respectively. The 
liquid water and humidity terms were found to vary by an 
order of magnitude, depending on the atmospheric 
conditions. The average values calculated over a 7 day period 
of dry conditions with variable cloud amounts were taken to 
be typical. The representativeness term evaluated in this way 
dominates the observation error covariance matrix, with 
terms ~(0.2-2.5 K)2. (This method also implicitly includes the 
radiometric noise.)  

The representativeness error has also been evaluated 
dynamically, based on the time series of observations within a 
1 hour window around each observation used for retrieval. It 
is hoped that this technique will allow the observation errors 
to be reduced in periods of atmospheric stability, when more 
confidence can be placed that the radiometer observations are 
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representative of the model’s state. Early trials with real data 
have produced more stable retrievals with similar 
characteristics to using a fixed value of E. 

The magnitude of the diagonal components of each term of 
R is shown in Fig. 1 for the 12 channels of the microwave 
radiometer, surface temperature and humidity sensors (as 
dimensionless lnq) and infrared radiometer.  
 

IV. FORWARD MODEL AND ITS JACOBIAN 

 
Fig. 2. Atmospheric absorption spectrum for typical surface conditions: 
T=288.15 K, p=1013.25 hPa, RH=100%, L=0.2 g/m3 following [5]. Line styles 
show total absorption coefficient and contribution from oxygen, water vapour 
and cloud according to the legend.  Grey vertical bars indicate the passbands of 
the Radiometrics TP/WVP-3000 microwave radiometer. 

A forward model, H(x), is needed to transform from state 
space to observation space. For the microwave radiometer, 
each channel’s Tb is calculated at an equivalent 
monochromatic frequency [9] using the radiative transfer 
equation to integrate down-welling emissions from each 
atmospheric layer between model levels using a standard 
absorption model [5], which was found to have small biases 
in these channels [10]. The forward model for the surface 
temperature and humidity sensors is trivial – a 1:1 translation 
to the lowest level of the state vector, x. A simple forward 
model defines Tir as the temperature of the lowest level with 
any cloud. A more sophisticated radiative transfer model has 
also been developed  for Tir which accounts for absorption by 
atmospheric water vapor and the finite extinction in liquid 
water cloud, assigning extinction coefficients of 
7.2 Np/km.(kg/m3)-1 [11] and 0.02 Np/km.(kg/kg)-1 

respectively. This model was found to give more Gaussian 
error characteristics, due to having less abrupt transitions. 

The Jacobian is the matrix of the sensitivity of the 
observation vector, y, to perturbations of each element of the 
state vector, x, H=H’(x)=∂y/∂x. It is needed to minimize the 
cost function (see section VI). In this case, H is calculated by 
‘brute force’ – each level of the state vector, x, is perturbed by 

1 K in temperature or 0.001 in lnqt. The magnitude of these 
perturbations was selected to ensure linearity of H, while 
preventing numerical errors due to truncation. 

However, to speed up the calculation, a Fast Absorption 
Predictor model is used to calculate the absorption in each 
level below 100 hPa as a third order polynomial function of 
pressure, temperature and q following [1]. This introduces an 
additional random error in the calculation of Tb 
approximately as large as the forward model error 
contribution above. 

H is only calculated for levels between 0-8 km, 
corresponding to the maximum range of likely impact from 
the radiometer data. For levels above this, H=0. 

 
Fig. 3. Temperature Jacobians of 51-59 GHz channels of Radiometrics 
TP/WVP-3000, scaled by model layer thickness,∆z:  H/∆z =(∂y/∂x)/∆z. 

V. ERROR ANALYSIS 
An estimate of the uncertainty on the retrieved profile can 

be derived by assuming the errors are normally distributed 
about the solution and that the problem is only moderately 
non-linear. In this case, the error covariance matrix of the 
analysis, A, is given by [2]: 

 ( ) 1T
i i

−-1 -1A = H R H + B  (2) 

where Hi is evaluated at the solution (or final iteration). 
Although A depends on the reference state through Hi, it 
has been evaluated for different combinations of 
instruments for a US standard atmosphere in Fig. 4. This 
shows error in the temperature profile retrieved from the 
radiometer is expected to approach 0.3 K near the surface, 
but increases with height, to exceed 1 K above 5 km. For 
the humidity profile, A varies greatly with x. In this case 
the retrieval’s lnq error increases from 0.1 (~10%RH) near 
the surface to 0.4 (~40%RH) by 3 km. This presents a 
substantial improvement on the background, which exceeds 
1 K at all levels, and the surface sensors alone, which only 
influence the lowest 500 m, but falls short of the 
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radiosonde’s accuracy above 1 km for both T and lnq. The 
radiosonde’s R used here is a diagonal matrix, dominated 
by representativeness errors and may not be perfect. 
However, the radiometer provides much more frequent 
observations than radiosondes can, reducing errors of 
representativeness applying their data to analysis at 
arbitrary times. 

 
Fig. 4. Background error covariance matrix from mesoscale model, B (black) 
and analysis error covariances matrices, A¸ with surface sensors only (green), 
radiometers and surface sensors (red), and radiosonde only (blue). Plotted as 
square root of the diagonal components for the lowest 5km of temperature [K] 
and humidity (lnq) [dimensionless]. 

 
Fig. 5. Vertical Resolution of temperature and humidity (lnq)  retrievals. 

However, A only tells part of the story. The other important 
aspect of the retrieval’s performance is the vertical resolution 
– i.e. its ability to resolve a perturbation in state space. One 
simple, robust definition of the vertical resolution is the 
inverse of the trace of the averaging kernel matrix [2], 
following  the concept of data density [12]. This is evaluated 
in Fig. 5, which shows that the vertical resolution of 
temperature profiles increases with height, from ~1 km near 
the surface, as approximately twice the height from 0.5-4 km. 

For lnq, it increases from 1.5 km near the surface, as 
approximately 4 times the height above 1.5 km. However this 
definition tends to over-estimate the vertical resolution by a 
factor of ~2 compared to other methods [13], [14].  
 

VI. MINIMIZATION OF COST FUNCTION 
Variational retrievals are performed by selecting the state 

vector that minimizes a cost function in the form of (1). For 
linear problems, where H is independent of x, this can be 
solved analytically. However, the retrieval of profiles of 
temperature above ~1 km and humidity is moderately non-
linear, so the minimization must be conducted numerically. 
This can be achieved using the Gauss-Newton method [2], by 
applying the following analysis increments iteratively: 
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where xi and xi+1 are the state vector before and after 
iteration i, B and R are the error covariance matrices of the 
background and observations, respectively, Hi is the Jacobian  
matrix at iteration, i. 

This is iterated until the following convergence criteria  [2] 
is satisfied, based on a χ2 test of the residuals of yo-H(x): 

( ) ( )1 1
T

i i i iH H H H mδ+ + <<      
-1

y(x ) - (x ) S (x ) - (x ) (4) 

where Sδy is the covariance matrix between yo and H(xi) 
and m is the dimension of yo (number of observations).  

This typically takes 3-10 iterations, each requiring ~0.25 s 
of CPU time on a 2.4 GHz Pentium IV using the Fast 
Absorption Predictor model. 

Upon convergence the retrieved state vector, x̂ , is tested for 
statistical consistency with xb and B by calculating the value:  

 ( ) ( )2 ˆ ˆχ = b -1 bx - x B x - x  (5) 

Retrievals with a χ2>20 were rejected, based on the 
expected distribution of χ2 for 99% of a population with 8 
degrees of freedom. While it is recognized that this over-
estimates the true number of degrees of freedom, it is 
important not to use a test that is too restrictive as we are 
particularly interested in cases where the background does not 
provide an accurate estimate of the truth. The choice of χ2 
threshold was found not to be critical, as it had a small 
influence on the statistics of the retrievals. 

 

VII. EXAMPLE 1D-VAR RETRIEVALS 
Fig. 6 shows an example of a 1D-VAR retrievals using 

synthetic observations, generated to be consistent with R. 
These are based on a real radiosonde profile  for Camborne 
(UK) at 11:21 on 9/12/2004 and NWP background profile 
from a 5 hr forecast, valid 21 minutes earlier. This case was 
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selected because the model had forecast the inversion ~200 m 
too low and overestimated the humidity by a factor of ~2 over 
the whole profile. The retrieval was repeated for 100 such sets 
of observations, 83% of which converged within an average 
of 9.1 iterations. The retrieved profiles are closely clustered 
with typical standard deviations of 0.2-0.5 K in temperature 
and 0.0-0.1 in lnq, showing they are relatively robust in the 
presence of observation noise. In all cases, the retrieval thins 
the cloud and gives profiles closer to the truth than the 
background. However, the structure of B makes it impossible 
for the retrieval to move a misplaced feature in the vertical.  

 
Fig. 6. Example retrievals (red) with 100 synthetic observations, with profiles 
between NWP model background (black) and truth (blue). Left panel shows 
temperature profiles. Right panel shows profiles of humidity (lnq) and liquid 
water (lnql) and specific humidity at saturation (dotted line). Retrievals improve 
background state, but fail to move inversion in vertical.  

VIII. CLOUD CLASSIFICATION SCHEME 
Examination of the performance of the retrieval scheme 

shows there are often problems when profiles approach the 
threshold of cloud formation – the residuals will often 
oscillate without reaching convergence. Attempts have been 
made to address this by implementing the Levenberg-
Marquardt [2] method of minimization, which adjusts the 
size of the increment at each iteration to change from the 
classic Gauss-Newton method towards the method of steepest 
decent, according whether the previous iteration has 
improved the χ2 value of xi. These investigations are 
continuing. 

Convergence problems in borderline cloud conditions can 
also be caused by the error characteristics of Tir, which can be 
highly non-Gaussian. This has been addressed by introducing 
a cloud classification as a pre-processing step to the retrieval, 
based on a threshold of the infrared brightness temperature, 
Tir. If the observed (or synthetic) Tir > min{Tamb-
40 K, 223 K}, the profile is classified as cloudy and the 
retrieval proceeds as described above. Otherwise, the profile 
is classified as clear and the control variable changed from 
the logarithm of the total water, lnqt to that of the specific 

humidity, lnq. In this case, an addition term [15] is added to 
the cost function, modified to prevent saturation or super-
saturation. In clear cases, Tir will have no impact on the 
retrievals and the representativeness term, which dominates 
R, can be reduced by re-evaluating it in only clear sky 
conditions, as for optically thin channels, this is dominated by 
cloud variability. This reduction allows the retrievals to be 
more accurate in clear conditions. Rainy observations are 
rejected. 

IX. STATISTICS OF 1D-VAR  RETRIEVALS 
1D-VAR retrievals were performed on an extended dataset 

of radiosonde profiles from Camborne during winter 2004/05, 
using synthetically generated observations and backgrounds, 
consistent with R and B, respectively. The statistics for the 
cloudy cases, shown in Fig. 7, are in excellent agreement 
with the expected performance from the error analysis, albeit 
with a poor convergence rate (77/179 cases). However, the 
retrieved temperature profiles do show a small, but consistent 
bias at higher levels. This may be introduced due to 
remaining non-linearity in the retrieval [16]. 

 
Fig. 7. Statistics of 1D-VAR retrievals using synthetic observations and 
background for 77 cloudy cases from Camborne, UK during winter 2004/05. 
Solid lines show standard deviation of difference between retrieved and sonde 
profiles. Dashed lines show bias. Diagonal terms of error covariances are shown 
as dotted lines for the analysis, A, black lines for the background, B. Red lines 
show the statistics of the cloudy 1D-VAR  retrieval. 

The retrieved values of Integrated Water Vapor (IWV) 
were also compared to the radiosonde values. These were 
found to be good, with a small bias and a standard deviation 
of 0.63 kg/m2 (compared to the corresponding value for 
synthetic backgrounds, 2.38 kg/m2). This compares favorably 
with other methods, which have been shown to retrieve IWV 
from microwave radiometer observations with an accuracy of 
better than 1.0 kg/m2 compared to radiosondes in mid-latitude 
winter [17]. This implies that the retrievals do not need an 
additional constraint in the cost function to force the IWV to 
match that retrieved by a simpler method.  
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X. CONCLUSIONS AND FUTURE WORK 
A 1-D variational retrieval has been developed to allow 

observations from ground-based microwave and infrared 
radiometers and surface sensors to be combined with a 
background from an NWP model in an optimal way, which 
accounts for their error characteristics. This has been shown 
to be advantageous over methods taking their background 
from statistical climatology [18]. This has been used to 
retrieve profiles of temperature, humidity and cloud using a 
novel total water control variable. 

The observation errors for channels sensitive to cloud were 
dominated by representativeness errors. To reduce their 
impact, these can be evaluated dynamically. However, 
convergence problems were encountered, partially due to the 
non-Gaussian error characteristics of the infrared 
observations. A cloud classification scheme has been 
introduced to address this and help constrain the retrievals. 
Other minimization schemes and convergence criteria may 
also help. 

The 1D-VAR retrievals also have the advantage of 
providing an estimate of the error on the retrieved profile. 
Error analysis has shown the microwave radiometer improves 
the NWP background, retrieving temperature profiles with 
<1 K uncertainty up to 5 km and humidity with <40% 
uncertainty below 3 km. However, the vertical resolution of 
the retrieved profiles is poor and degrades with height. 
Furthermore, the retrievals were not able to move a misplaced 
feature in the background profile. 

The variational method allows different instruments to be 
combined if their observations’ forward model operator and 
error estimates are available. This provides a basis for the 
development of Integrated Observing Systems. In the future 
the 1D-VAR retrievals will be extended to include 
observations from other instruments, such as the cloud base 
height from a ceilometer, Integrated Water Vapor from GPS, 
cloud base/top from cloud radar and boundary layer height 
from a wind profiler. 

Assimilation of these observations could improve 
mesoscale Numerical Weather Prediction (NWP), especially 
in the boundary layer and cloud properties. However, to fully 
exploit the high time resolution available from ground-based 
instruments will require 4-Dimensional Variational 
Assimilation (4D-VAR). 
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