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1D-VAR Retrieval of Temperature and Humidity
Profiles From a Ground-Based

Microwave Radiometer
Tim J. Hewison, Member, IEEE

Abstract—A variational method to retrieve profiles of temper-
ature, humidity, and cloud is described, which combines obser-
vations from a 12-channel microwave radiometer, an infrared
radiometer, and surface sensors with background from short-
range numerical weather prediction (NWP) forecasts in an opti-
mal way, accounting for their error characteristics. An analysis
is presented of the error budget of the background and obser-
vations, including radiometric, modeling, and representativeness
errors. Observation errors of some moisture channels are found
to be dominated by representativeness, due to their sensitivity to
atmospheric variability on smaller scales than the NWP model
grid, whereas channels providing information on temperature in
the lowest 1 km are dominated by instrument noise. Profiles of
temperature and a novel total water control variable are retrieved
from synthetic data using Newtonian iteration. An error analysis
shows that these are expected to improve mesoscale NWP, retriev-
ing temperature and humidity profiles up to 4 km with uncertain-
ties of < 1 K and < 40% and 2.8 and 1.8 degrees of freedom for
signal, respectively, albeit with poor vertical resolution. A cloud
classification scheme is introduced to address convergence prob-
lems and better constrain the retrievals. This Bayesian retrieval
method can be extended to incorporate observations from other
instruments to form a basis for future integrated profiling systems.

Index Terms—Atmospheric measurements, microwave radiom-
etry, remote sensing, variational methods.

I. INTRODUCTION

NUMERICAL weather prediction (NWP) and nowcast-
ing applications have a requirement for observations of

temperature and humidity profiles of increasing accuracy, fre-
quency, and resolution. It is anticipated that these require-
ments may be addressed by integrating observations from
different ground-based remote sensing instruments, including
a microwave radiometer, to supplement the radiosonde network
and to complement satellite data over land. These integrated
profiling systems offer the potential to provide information
on vertical profiles of temperature, humidity, and clouds at a
high temporal resolution, which could be assimilated into the
next generation of convective-scale NWP models. This paper
demonstrates a 1-D variational (1D-VAR) retrieval method that
can be used to combine observations from multiple instruments
with background information from an NWP model to retrieve
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profiles of temperature and total water. The performance of
these retrievals can be compared with user requirements.

The retrieval of temperature and humidity profiles from pas-
sive ground-based sensors is an ill-posed problem because there
are an infinite number of atmospheric states that can produce
a given observation vector within its uncertainty. This can be
resolved by the addition of background data, for example, in the
form of a short-range forecast from an NWP model. Variational
retrievals provide an optimal method of combining observations
with a background, which accounts for the assumed error
characteristics of both. For this reason, they are often referred to
as optimal estimation retrievals. The 1D-VAR retrievals that are
presented here are similar to the integrated profiling technique
[1], but they take their background from an NWP model instead
of radiosondes and use different control variables to concentrate
on retrieving temperature and humidity.

The 1D-VAR retrieval is performed by adjusting the at-
mospheric state vector x from the background state xb to
minimize a cost function of the following form [2]:

J(x)=[x−xb]T B−1[x−xb]+ [y−H(x)]T R−1[y−H(x)]
(1)

where B and R are the error covariance matrices of the back-
ground xb and observation vector y, respectively; H(x) is the
forward model operator; and T and −1 are the matrix transpose
and inverse, respectively, using standard notation [3].

II. BACKGROUND DATA AND STATE VECTOR

The mesoscale version of the Met Office Unified Model
is used to provide background data for the retrievals in the
form of profiles of temperature, humidity, and liquid water.
The model grid points are interpolated to the position of the
observations. This model is initiated every 6 h, including data
from radiosonde stations. A short-range forecast (T + 3 h to
T + 9 h) is used for the background, as would be available
to operational assimilation schemes, and is independent of any
radiosondes that are launched at observation time, which may
be used to validate the retrievals.

The state vector x that is used in the retrievals is defined as
the temperature and total water at the lowest 28 model levels.
These extend up to 14 km but are concentrated near the surface,
where most of the radiometer’s information is.

In this paper, the humidity components of the state vector
are defined as the natural log of total water, i.e., ln qt (q is the
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specific humidity). This control variable is a modified version of
that suggested in [4], with a smooth transfer function between
water vapor for qt/qsat < 90% and liquid water for qt/qsat >
110% (where qsat is q at saturation) [5]. The condensed part
of the total water is further partitioned between liquid and ice
fractions as a linear function of temperature, producing pure ice
at −40 ◦C. The ice is ignored in the microwave forward model
but absorbs like liquid in the infrared. The choice of total water
has the advantages of reducing the dimension of the state vec-
tor, enforcing an implicit supersaturation constraint (because
absorption by liquid water is much stronger than by vapor) and
correlation between humidity and liquid water. The logarithm
creates error characteristics that are more closely Gaussian and
prevents unphysical retrieval of negative humidity.

The background error covariance B describes the expected
variance at each level between the forecast and true state vector
and the correlations between them. In this paper, B was taken
from that used to assimilate data from satellite instruments
operationally at the Met Office. The diagonal components of
B are shown later for reference in Fig. 3.

III. OBSERVATIONS

This paper synthesizes observations from the Radiometrics
TP/WVP-3000 microwave radiometer [6], which has 12 chan-
nels: Seven in the oxygen band 51–59 GHz, to provide infor-
mation primarily on the temperature profile, and five between
22–30 GHz near a water vapor line, to provide humidity and
cloud information. (However, frequencies below ∼53 GHz are
also sensitive to moisture.) This radiometer includes sensors to
measure pressure, temperature, and humidity at ∼1 m above
the surface. The instrument’s integral rain sensor is used to
reject periods that may be contaminated by scattering from
precipitation, as this is not included in the forward model, and
emission from raindrops on the radome, which may bias the
calibration. This instrument incorporates an optional zenith-
viewing infrared radiometer (9.6–11.5 µm) to provide informa-
tion on the cloud base temperature.

In this paper, the observation vector y is defined as a vector
of the zenith brightness temperatures Tb that is measured by the
radiometer’s 12 channels, with additional elements for the sur-
face temperature TAMB and humidity (converted to ln qAMB)
and the infrared brightness temperature Tir, i.e.,

y = [Tb1, Tb2, . . . , Tb12, TAMB, ln qAMB, Tir]. (2)

The observation error covariance R has contributions from
the radiometric noise (E), forward model (F), and represen-
tativeness (M) errors (R = E + F + M). The magnitude of
each term of R is shown as

√
diag(R) in Table I for the

12 channels of the microwave radiometer, surface tempera-
ture, and humidity sensors (as dimensionless ln q) and infrared
radiometer.

The radiometric noise E can be evaluated as the covariance
of y measured while viewing a stable scene (such as a liquid
nitrogen target) over a short period (∼30 min). E is approx-
imately diagonal—i.e., the channels are independent—with

TABLE I
DIAGONAL COMPONENTS OF OBSERVATIONS’ ERROR COVARIANCE

MATRIX
√

diag(R) EVALUATED FOR ALL DRY WEATHER CONDITIONS

diagonal terms ∼(0.1–0.2 K)2, except the 57.29-GHz channel
of this particular instrument, as shown in Table I.

The forward model error F includes contributions from un-
certainties in the spectroscopy and errors introduced by the pro-
file discretization and model approximations (see Section IV).
The spectroscopic component was estimated as the covariance
of the difference in zenith Tb, which was calculated using two
absorption codes [7], [8]. The other terms were calculated as the
covariance of the difference between Tb, which was calculated
using the full line-by-line model at high vertical resolution and
the approximations. F contains significant off-diagonal terms
and is the largest for the channels that are most sensitive to
the water vapor continuum (26–52 GHz), where it reaches
∼(1.1 K)2.

The representativeness error M allows for the radiometer’s
sensitivity to fluctuations on smaller scales than those
represented by the NWP model. It is possible to estimate M by
studying the fluctuations in the radiometer’s signal on typical
timescales taken for atmospheric changes to advect across the
horizontal resolution of the NWP model. In the case of the
mesoscale model with a 12-km grid, 1200 s was chosen to
represent a typical advection timescale. The root-mean-square
(rms) difference (divided by

√
2) in y that was measured over

this time interval was used to calculate M, after subtracting the
contribution from the radiometric noise E. This showed strong
correlation between those channels that are sensitive to liquid
water, water vapor, and temperature, respectively. However,
this method is likely to underestimate the spatial variability
for the surface sensors, which are strongly coupled to surface
properties. The moisture terms were found to vary by an order
of magnitude, depending on the atmospheric conditions. The
average values of M that were calculated over a seven-day
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Fig. 1. Atmospheric absorption spectrum for typical surface conditions: T =
288.15 K, p = 1013.25 hPa, RH = 100%, and L = 0.2 g/m3 following [5].
Line styles show total absorption coefficient and contribution from oxygen,
water vapor, and cloud liquid (L) according to the legend. Vertical bars
indicate the center frequencies of the Radiometrics TP/WVP-3000 microwave
radiometer.

period of dry conditions with variable cloud amounts were
taken to be typical. This period was later subdivided into clear
and cloudy samples based on Tir (see Section VIII), and M
was reevaluated for each. The representativeness term that was
evaluated in this way dominates the observation error covari-
ance of some channels, with terms ∼(0.1–1.7 K)2. M would be
proportionally smaller for high-resolution models. M can also
be evaluated dynamically, based on time series of observations
within 1-h window of each observation. This technique allows
the errors to be reduced in periods of atmospheric stability,
when more confidence can be placed that the radiometer
observations are representative of the model’s state.

IV. FORWARD MODEL AND ITS JACOBIAN

A forward model H(x) is needed to transform from state
space to observation space. For the microwave radiometer,
each channel’s Tb is calculated at an equivalent monochromatic
frequency [9] using the radiative transfer equation to integrate
downwelling emissions from each atmospheric layer between
model levels using a standard absorption model [7], which was
found to have small biases in these channels [10]. The forward
model for the surface temperature and humidity sensors is
trivial—a 1 : 1 translation to the lowest level of the state vector
x. A simple forward model defines Tir as the temperature of
the lowest level with any cloud. A more sophisticated radiative
transfer model is used here to calculate Tir, which accounts for
extinction by atmospheric water vapor and liquid water cloud,
assigning extinction coefficients of 0.02 Np/km · (kg/kg)−1 and
33.3 Np/km · (kg/m3)−1, respectively [5]. This model gives
more Gaussian error characteristics, due to having less abrupt
transitions at cloud boundaries. Examples of the forward model
and its Jacobian are shown in Figs. 1 and 2.

The Jacobian is the matrix of the sensitivity of the obser-
vation vector y to perturbations of each element of the state
vector x, i.e., H = H ′(x) = ∇xy. It is needed to minimize the
cost function (see Section VI). In this paper, H is calculated

Fig. 2. Jacobian’s temperature components for the 51–59-GHz channels of
Radiometrics TP/WVP-3000, scaled by model layer thickness ∆z : H/∆z.

by brute force—each level of the state vector x is perturbed
by 1 K in temperature or 0.001 in ln qt. The magnitudes of
these perturbations were selected to ensure linearity of H while
preventing numerical errors due to truncation.

However, to speed up the calculation, a fast absorption
predictor model is used to calculate the absorption in each level
below 100 hPa as a third-order polynomial function of pressure,
temperature, and q following [1]. This introduces an additional
error in the calculation of Tb, as aforementioned. H is only
calculated for levels between 0 and 8 km above ground level,
corresponding to the maximum range of likely impact from
the radiometer data, as can be seen in Fig. 2. For levels above
this, H = 0.

V. ERROR ANALYSIS

An estimate of the uncertainty in the retrieved profile can
be derived by assuming that the errors are normally distributed
about the solution and that the problem is only moderately
nonlinear. In this case, the error covariance matrix of the
analysis, i.e., A, is given [2] by

A =
(
HT

i R−1Hi + B−1
)−1

(3)

where Hi is evaluated at the solution (or final iteration).
It is also possible to express the information content of the

observations with respect to the background as the degrees
of freedom for signal (DFS), which represents the number of
layers in the retrieved profile that are retrieved independently
[2], i.e.,

DFS = Tr(I − AB−1) (4)

where I is the identity matrix, and Tr(·) is the trace operator.
A has been evaluated for different combinations of instru-

ments for a clear U.S. standard atmosphere in Fig. 3, although
it depends on the reference state through Hi. This shows that
the error in the temperature profile that is retrieved from the
radiometer is expected to approach 0.1 K near the surface, but
it increases with height, to exceed 1 K above 5 km, and includes
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Fig. 3. (Solid) Background error covariance from mesoscale model√
diag(B) and analysis error covariances

√
diag(A) with (dash-dot) surface

sensors only, (dashes) radiometers and surface sensors, and (dash-dot-dot)
radiosonde only. Plotted as square root of the matrices’ diagonal compo-
nents for the lowest 5 km of temperature (in kelvins) and humidity (ln q)
(dimensionless).

2.8 DFS. For the humidity profile, A varies greatly with x.
In this example, the retrieval’s ln q error increases from 0.05
(∼5%) near the surface to 0.4 (∼40%) by 3 km and includes
1.8 DFS. DFS increases by ∼1.0 in cloudy conditions due to the
extra information that is available from Tir. These results show
a substantial improvement on the background and the surface
sensors alone, which only influence the lowest 500 m.

The performance of the retrievals from radiometer data can
be compared to radiosondes. A was recalculated using errors
currently assumed in the operational assimilation of radiosonde
data at the Met Office, which are diagonal and dominated
by representativeness. Fig. 3 shows that radiosondes provide
more accurate analysis above 1 km than the radiometer for
both temperature and humidity. However, below 1 km, the
radiometer retrievals are comparable to radiosondes and pro-
vide much more frequent observations than radiosondes can,
reducing errors of representativeness by applying their data to
analysis at arbitrary times.

However, A only tells part of the story. The other im-
portant aspect of the retrieval’s performance is the vertical
resolution—its ability to resolve a perturbation in state space.
One simple robust definition of the vertical resolution is the
inverse of the diagonal of the averaging kernel matrix [2],
which is scaled by the layer spacing. This is evaluated in
Fig. 4, which shows that the vertical resolution of temperature
profiles degrades with height, from ∼700 m near the surface,
approximately linearly as twice the height from 0.5 to 4 km. For
ln q, it degrades very rapidly above 1.6 km, from ∼1.6 km near
the surface, but is critically dependent on the reference state
x due to nonlinearity in H. Fig. 4 shows that the temperature
information is concentrated in the lowest few kilometers but
drops off steadily with height, whereas for humidity, it is all
concentrated in the lowest 2 km in this example.

The apparent degradation of vertical resolution near the sur-
face is due to the assumed correlations in B. If the correlations
between the six lowest levels in B are suppressed by a factor

Fig. 4. Vertical resolution of temperature and humidity (ln q) for radiosonde
and 1D-VAR radiometer retrievals in clear U.S. standard atmosphere found
using the aforementioned averaging kernel matrix method, which depends on
the case that is considered, due to nonlinearity in H.

of 10 for both temperature and humidity, the resulting vertical
resolutions do not increase near the surface in this way. This
sensitivity to the choice of B makes it difficult to compare
these results with other definitions, which tend to produce more
optimistic results [11], [12].

VI. MINIMIZATION OF COST FUNCTION

Variational retrievals are performed by selecting the state
vector that minimizes a cost function in the form of (1).
For linear problems, where H is independent of x, this can
be solved analytically. However, the retrieval of temperature
profiles above ∼1 km and humidity profiles is moderately non-
linear; thus, the minimization must be conducted numerically.
This has been achieved using the Levenberg–Marquardt method
[2] (which was found to improve the convergence rate in
cloudy conditions as compared to the Gauss–Newton method)
by applying the following analysis increments iteratively:

xi+1 = xi +
(
(1 + γ)B−1 + HT

i R−1Hi

)−1

· [HT
i R−1 (y − H(xi)) − B−1(xi − xb)

]
(5)

where xi and xi+1 are the state vectors before and after iteration
i, respectively, Hi is the Jacobian matrix at iteration i, and γ is
a factor that is adjusted after each iteration depending on how
J(x) has changed. As γ → 0, the step tends toward the same as
the Gauss–Newton method; as γ → ∞, it tends to the steepest
decent of J(x).

Equation (5) is iterated until the following convergence
criterion [2] is satisfied, based on a χ2 test of the residuals of
[y − H(x)]:

[(H(xi+1) − H(xi))]
T S−1

δy [(H(xi+1) − H(xi))] 
 m (6)

where Sδy is the covariance matrix between y and H(xi), and
m is the dimension of y (m = 15 in this case).
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Fig. 5. Example retrievals with 105 synthetic observations, with profiles
between NWP model background and truth. Left panel shows temperature
profiles. Right panel shows profiles of relative humidity (RHqt = qt/qsat)
and (dotted line) cloud liquid water content (in grams per cubic meter).

Convergence typically takes three to ten iterations, each
requiring ∼0.25 s of central processing unit time on a 2.4-GHz
Pentium IV using the fast absorption predictor model.

Upon convergence, the retrieved state vector x̂ is tested for
statistical consistency with y and R by calculating the value of

χ2 = [H(x̂) − y]T R−1 [H(x̂) − y] . (7)

Retrievals with a χ2 > 100 were rejected. The choice of χ2

threshold was found not to be critical, as it had a small influence
on the statistics of the retrievals.

VII. EXAMPLE OF 1D-VAR RETRIEVALS

Fig. 5 shows an example of the 1D-VAR retrievals using
synthetic observations, which are generated to be consistent
with R. These are based on a real radiosonde profile for
Camborne, U.K., at 11:21 on December 9, 2004, and NWP
background profile from a 5-h forecast, valid 21 min earlier.
This case was selected because the model had forecast the
inversion ∼200 m too low and overestimated the humidity by a
factor of ∼2 over the whole profile. The retrieval was repeated
for 100 such sets of observations, all of which converged in
four iterations. The retrieved profiles are closely clustered with
typical standard deviations of 0.2–0.5 K in temperature and
0.05–0.10 in ln q, showing that they are relatively robust in the
presence of observation noise. In this example, all retrievals
thin the cloud and give profiles closer to the truth than the
background. However, the correlation between temperature at
adjacent levels of B makes it impossible for the retrieval to
move a misplaced feature in the vertical without additional
information—e.g., observations at lower elevation angles.

Fig. 6. Statistics of 1D-VAR retrievals using synthetic observations and
background for 314 cases from Camborne. Solid lines show standard deviation
of difference between retrieved and sonde profiles. Dashed lines show bias.
Theoretical error covariances are shown as dotted lines for the analysis,√

diag(A), and the background,
√

diag(B). Red lines show statistics of all
the 1D-VAR retrievals, whereas black lines show statistics of the background.

VIII. CLOUD CLASSIFICATION SCHEME

Examination of the performance of the retrieval scheme
showed that there were often problems when the humidity
approaches the threshold of cloud formation—the residuals
often oscillate without reaching convergence. This was partially
improved by the implementation of the Levenberg–Marquardt
method of minimization, which adjusts the size of the increment
at each iteration to change from the classic Gauss–Newton
method toward the method of steepest decent, based on whether
the previous iteration has reduced J .

Convergence problems where ln qt approaches the cloud
threshold can also be caused by the error characteristics of Tir,
which can be highly non-Gaussian. This has been addressed
by introducing a cloud classification as a preprocessing step
to the retrieval, which is based on a threshold of the infrared
brightness temperature Tir. If the observed (or synthetic) Tir >
max{TAMB − 40 K, 223 K}, the profile is classified as cloudy,
and the retrieval proceeds as described previously in the text.
Otherwise, the profile is classified as clear, and the control
variable changed from ln qt to the log of the specific humidity
ln q, and an additional term [13] is added to the cost function to
prevent saturation. In clear cases, the representativeness term
can be reduced by reevaluating it in only clear sky conditions to
allow more accurate retrievals in clear conditions.

IX. STATISTICS OF 1D-VAR RETRIEVALS

1D-VAR retrievals were performed on an extended data set
of one year of radiosonde profiles from Camborne but using
synthetically generated observations and backgrounds, which
were consistent with R and B, respectively. Cloud was gener-
ated at levels where RH > 90% by converting the radiosondes’
humidity to total water. The statistics for the combined clear
and cloudy cases, as shown in Fig. 6, are in good agreement
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with the expected performance from the error analysis, with a
convergence rate of 75%. There is no significant difference in
the performance in clear and cloudy cases, although the con-
vergence rate is poorer in cloudy conditions. The background
profiles have a small bias, which is corrected in the retrievals.

The application of this method to real observations and back-
ground from NWP models introduces biases and non-Gaussian
error characteristics, which slightly reduces the convergence
rate. If they are sufficiently stable, biases may be reduced by
correcting the observations with respect to the background prior
to performing the retrieval.

The retrieved values of integrated water vapor (IWV) were
also compared to the radiosonde values. These were found
to be good, with a small bias and a standard deviation of
0.88 kg/m2, providing a substantial improvement on the cor-
responding value for the synthetic backgrounds (2.00 kg/m2),
and compared favorably with other methods, which have been
shown to retrieve IWV from microwave radiometer observa-
tions with an accuracy of better than 1.0 kg/m2 as compared
to radiosondes in midlatitude winter [14]. This implies that
the retrievals do not need an additional constraint in the cost
function to force the IWV to match that retrieved by a simpler
method, as this is achieved implicitly in the 1D-VAR retrievals.

X. CONCLUSION AND FUTURE WORK

A 1D-VAR retrieval has been developed to allow observa-
tions from ground-based microwave and infrared radiometers
and surface sensors to be combined with a background from an
NWP model in an optimal way, which accounts for their error
characteristics. This has been shown to be advantageous over
methods taking their background from statistical climatology
[15]. The 1D-VAR method has been used to retrieve profiles
of temperature, humidity, and clouds using a novel total water
control variable.

The observation errors for channels that were sensitive to
clouds were dominated by representativeness errors. To reduce
their impact, these can be evaluated dynamically. Convergence
problems were encountered in cloudy cases, partially due to the
non-Gaussian error characteristics of the infrared observations.
A cloud classification scheme has been introduced to address
this and help constrain the retrievals.

The 1D-VAR retrievals also have the advantage of providing
an estimate of the error in the retrieved profile. Error analysis
has shown that the microwave radiometer improves the NWP
background up to 4 km, retrieving temperature profiles with
< 1 K uncertainty and 2.8 DFS and humidity with < 40%
uncertainty and 1.8 degrees of freedom. These results depend
on the background error covariance. However, the vertical
resolution of the retrieved profiles is poor and degrades with
height. Furthermore, the retrievals were not able to move a
misplaced feature in the background temperature profile.

The variational method allows different instruments to be
combined if their observations’ forward model operator and
error estimates are available. This provides a basis for the
development of integrated profiling systems. In the future, the
1D-VAR retrievals will be extended to include observations
from other instruments, such as the cloud base height from

a ceilometer, cloud base/top from cloud radar, and refractive
index gradient from a wind profiler.

Assimilation of these observations could improve mesoscale
NWP, particularly boundary layer and cloud properties. How-
ever, fully exploiting the high time resolution that is available
from ground-based instruments will require 4-D variational
assimilation.
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