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1. INTRODUCTION
Numerical Weather Prediction (NWP) and nowcasting applications have a requirement for observations of temperature and humidity profiles of increasing accuracy, frequency and resolution. It is anticipated that these requirements may be addressed by integrating observations from different ground-based remote sensing instruments, including a microwave radiometer, to supplement the radiosonde network and to complement satellite data over land. These Integrated Profiling Systems offer the potential to provide information on vertical profiles of temperature, humidity and cloud at a high temporal resolution, which could be assimilated into the next generation of convective scale NWP models. This paper demonstrates a one dimensional variational (1D-VAR) retrieval method can be used to combine observations from multiple instruments with background information from an NWP model to provide retrievals of temperature, humidity and cloud profiles. The performance of these retrievals can be compared with the user requirements.

The retrieval of temperature and humidity profiles from passive ground-based sensors is an ill-posed problem, because there are an infinite number of atmospheric states that can produce a given observation vector within its uncertainty. This can be resolved by the addition of background data. Variational retrievals provide an optimal method of combining observations with a background in the form of a short-range forecast from an NWP model, which accounts for the assumed error characteristics of both. For this reason they are often referred to as Optimal Estimation retrievals. The 1D-VAR retrievals presented here are similar to the Integrated Profiling Technique [1], but takes its background from an NWP model instead of radiosondes and uses different control variables to concentrate on retrieving profiles of atmospheric temperature and humidity.
The 1D-VAR retrieval is performed by adjusting the atmospheric state vector, x, from the background state, xb, to minimize a cost function of the form [2]:
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where B and R are the error covariance matrices of the background, xb, and observation vector, y, respectively, H(x) is the forward model.
2. Background Data and State Vector
The mesoscale version of the Met Office Unified Model is used to provide background data for the retrievals in the form of profiles of temperature, humidity and liquid water. The model grid points are interpolated to the position of the observations. This model is initiated every six hours, including data from radiosonde stations. A short-range forecast (T+3 to T+9 hr) is used for the background, as would be available to operational assimilation schemes. 

The state vector, x, used in the retrievals is defined as the temperature and total water on the lowest 28 model levels. These extend up to 14 km, but are concentrated near the surface, where most of the radiometer’s information is.

In this study the humidity components of the state vector are defined as the natural log of total water, lnqt. (q is the specific humidity.) This control variable is a modified version of that suggested in [3], with a smooth transfer function between water vapour for qt /qsat < 90% and liquid water for qt /qsat >110% (where qsat is q at saturation.) The condensed part of the total water is further partitioned between liquid and ice fractions as a linear function of temperature, producing pure ice at -40(C. The choice of total water has the advantages of reducing the dimension of the state vector, enforcing an implicit super-saturation constraint and correlation between humidity and liquid water. The logarithm creates error characteristics that are more closely Gaussian and prevents unphysical retrieval of negative humidity. 
The background error covariance, B, describes the expected variance at each level between the forecast and true state vector and the correlations between them. In this work, B was taken from that used to assimilate data from satellite instruments operationally at the Met Office. 
3. Observations
This study uses observations from the Radiometrics TP/WVP-3000 microwave radiometer [4]. This has 12 channels: seven in the oxygen band 51-59 GHz, which provide information primarily on the temperature profile and five between 22-30 GHz near a water vapour line, which provide humidity and cloud information. This radiometer includes sensors to measure pressure, temperature and humidity at ~1 m above the surface. The pressure is taken as a reference from which geopotential height is calculated at other pressure levels via the hydrostatic equation. The instrument’s rain sensor is used to reject periods which may be contaminated by scattering from precipitation, as this is not included in the forward model and emission from raindrops on the radome, which may bias the calibration. This instrument incorporates an optional zenith-viewing infrared radiometer (9.6-11.5 (m) to provide information on the cloud base temperature.
In this study the observation vector, y, is defined as a vector of the zenith brightness temperatures (Tb) measured by the radiometer’s 12 channels, with additional elements for the surface temperature (TAMB) and humidity (converted to lnqAMB) and the infrared brightness temperature (Tir):
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The observation error covariance, R, has contributions from the radiometric noise (E), forward model (F) and representativeness (M) errors ( R = E + F + M ). These terms are analysed in detail by Hewison [5]. 

4. Forward Model and its Jacobian
A forward model, H(x), is needed to transform from state space to observation space. For the microwave radiometer, each channel’s Tb is calculated at an equivalent monochromatic frequency [6] using the radiative transfer equation to integrate down-welling emissions from each atmospheric layer between model levels using a standard absorption model [7], which was found to have small biases in these channels [8]. The forward model for the surface temperature and humidity sensors is trivial – a 1:1 translation to the lowest level of the state vector, x. A simple forward model defines Tir as the temperature of the lowest level with any cloud. A more sophisticated radiative transfer model is used here to calculate Tir which accounts for absorption by atmospheric water vapour and the finite extinction in liquid water cloud, assigning extinction coefficients of 33.3 Np/km.(kg/m3)-1 and 0.02 Np/km.(kg/kg)-1 respectively. This model gives more Gaussian error characteristics, due to having less abrupt transitions at cloud boundaries. 
The Jacobian is the matrix of the sensitivity of the observation vector, y, to perturbations of each element of the state vector, x, H=H’(x)=(xy. It is needed to minimize the cost function (see section 6). In this study, H is calculated by brute force – each level of the state vector, x, is perturbed by 1 K in temperature or 0.001 in lnqt. The magnitude of these perturbations was selected to ensure linearity of H, while preventing numerical errors due to truncation.

However, to speed up the calculation, a Fast Absorption Predictor model is used to calculate the absorption in each level below 100 hPa as a third order polynomial function of pressure, temperature and q following [1]. This introduces an additional error in the calculation of Tb described above. H is only calculated for levels between 0-8 km, corresponding to the maximum range of likely impact from the radiometer data. For levels above this, H=0.

5. Error Analysis
An estimate of the uncertainty on the retrieved profile can be derived by assuming the errors are normally distributed about the solution and that the problem is only moderately non-linear. The error covariance matrix of the analysis, A, is given [2] by:
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where Hi is evaluated at the solution (or final iteration).
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Fig. 1. Background error covariance matrix from mesoscale model, B1/2 (black) and analysis error covariances matrices, A1/2¸ with surface sensors only (green), radiometers and surface sensors (red), and radiosonde only (blue). 
It is also possible to express the information content of the observations with respect to the background as the Degrees of Freedom for Signal, DFS, which represents the number of layers in the retrieved profile which are retrieved independently [2]:
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A has been evaluated for different combinations of instruments for a clear US standard atmosphere in Fig. 1, although it depends on the reference state through Hi. This shows error in the temperature profile retrieved from the radiometer is expected to approach 0.1 K near the surface, but increases with height, to exceed 1 K above 5 km and includes 2.8 degrees of freedom. For the humidity profile, A varies greatly with x. In this example the retrieval’s lnq error increases from 0.05 (~5%RH) near the surface to 0.4 (~40%RH) by 3 km and includes 1.8 degrees of freedom, increasing by ~1.0 in cloudy conditions. This presents a substantial improvement on the background and the surface sensors alone, which only influence the lowest 500 m, but falls short of the radiosonde’s accuracy above ~1 km for both T and lnq. Fig. 1 also shows the analysis error resulting from the errors assumed in the assimilation of radiosonde data in the Met Office NWP models. Their R is a diagonal matrix, dominated by representativeness errors and may not be perfect. However, the radiometer provides much more frequent observations than radiosondes can, reducing errors of representativeness applying their data to analysis at arbitrary times.

However, A only tells part of the story. The other important aspect of the retrieval’s performance is the vertical resolution – its ability to resolve a perturbation in state space. One simple, robust definition of the vertical resolution is the inverse of the trace of the averaging kernel matrix [2]. This is evaluated in Fig. 2, which shows that the vertical resolution of temperature profiles increases with height, from ~1 km near the surface, as approximately twice the height from 0.5-4 km. For lnq, it increases from ~1.5 km near the surface, as approximately 4 times the height above 1.5 km, but this is critically dependent on the reference state, x, due to non-linearity in H. However, this definition tends to over-estimate the vertical resolution by a factor of ~2 compared to other methods [9]. 
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Fig. 2. Vertical Resolution of temperature and humidity.
6. Minimization of Cost Function
Variational retrievals are performed by selecting the state vector that minimizes a cost function in the form of [2](1)

. For linear problems, where H is independent of x, this can be solved analytically. However, the retrieval of temperature profiles above ~1 km and humidity profiles is moderately non-linear, so the minimization must be conducted numerically. This has been achieved using the Levenberg-Marquardt method  GOTOBUTTON ZEqnNum270628  \* MERGEFORMAT  (which was found to improve the convergence rate in cloudy conditions compared to the classic Gauss-Newton method) by applying the following analysis increments iteratively:
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where xi and xi+1 are the state vector before and after iteration i, and Hi is the Jacobian  matrix at iteration, i.
This is iterated until the following convergence criteria [2] is satisfied, based on a (2 test of the residuals of [y-H(x)]:
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where S(y is the covariance matrix between y and H(xi) and m is the dimension of y (m=15 in this case). 

This typically takes 3-10 iterations, each requiring ~0.25 s of CPU time on a 2.4 GHz Pentium IV using the Fast Absorption Predictor model.

Upon convergence the retrieved state vector,
[image: image9.wmf]ˆ
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, is tested for statistical consistency with y and R by calculating the value: 
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Retrievals with a (2>100 were rejected. The choice of (2 threshold was found not to be critical, as it had a small influence on the statistics of the retrievals.

7. Example 1D-VAR Retrievals
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Fig. 3. Example retrievals (red) with 105 synthetic observations, with profiles between NWP model background (black) and truth (blue). Left panel shows temperature profiles. Right panel shows profiles of relative humidity (RHqt=qt/qsat) and cloud liquid water content [g/m3] (dotted line). 
Fig. 3 shows an example of a 1D-VAR retrievals using synthetic observations, generated to be consistent with R. These are based on a real radiosonde profile  for Camborne (UK) at 11:21 on 9/12/2004 and NWP background profile from a 5 hr forecast. This case was selected because the model had forecast the inversion ~200 m too low and overestimated the humidity by a factor of ~2 over most of the profile, including an erroneous cloud layer. The retrieval was repeated for 105 such sets of observations, all of which converged in 4 iterations. The retrieved profiles are closely clustered with typical standard deviations of 0.2-0.4 K in temperature and 0.05-0.10 in lnq, showing they are relatively robust in the presence of observation noise. In all cases, the retrieval removes the cloud and gives profiles closer to the truth than the background. However, the correlation between temperature at adjacent levels of B makes it impossible for the retrieval to move a misplaced feature in the vertical. 

8. Statistics of 1D-VAR  Retrievals

1D-VAR retrievals were performed on a dataset of 1 year of radiosonde profiles from Camborne, using synthetically generated observations and backgrounds, consistent with R and B, respectively. The statistics for the combined clear and cloudy cases, shown in Fig. 4, are in good agreement with the expected performance from the error analysis. There is no significant difference in the performance in clear and cloudy cases. Although the background profiles have a small bias, this is corrected in the retrievals. 
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Fig. 4. Statistics of 1D-VAR retrievals using synthetic observations and background for 484 cases from Camborne, UK during 1 year. Dashed lines show the average bias. Solid lines show standard deviation of difference between retrieved and sonde profiles. Dotted lines show the diagonal terms of error covariances, B1/2ATOVS and A1/2. Black lines show the background. Red lines show the statistics of the analysis.
The retrieved values of Integrated Water Vapour (IWV) were also compared to the radiosonde values. These were found to be good, with a small bias and a standard deviation of 0.88 kg/m2 (compared to the corresponding value for synthetic backgrounds, 2.00 kg/m2). This compares favourably with other methods [10]. This implies the retrievals do not need an additional constraint in the cost function to force the IWV to match that retrieved by a simpler method as this is achieved implicitly in the 1D-VAR retrievals. 

9. Conclusions and Future Work
A 1-D variational retrieval has been developed to allow observations from ground-based microwave and infrared radiometers and surface sensors to be combined with a background from an NWP model in an optimal way, which accounts for their error characteristics. This has been used to retrieve profiles of temperature, humidity and cloud using a novel total water control variable. This has been shown to be advantageous over methods taking their background from statistical climatology [11]. 
The 1D-VAR retrievals also have the advantage of providing an estimate of the error on the retrieved profile. Error analysis has shown the microwave radiometer improves the NWP background up to 4 km, retrieving temperature profiles with <1 K uncertainty and 2.8 degrees of freedom for signal and humidity with <40% uncertainty and 1.8 degrees of freedom. However, the vertical resolution of the retrieved profiles is poor and degrades with height. Furthermore, the retrievals were not able to move a misplaced feature in the background profile. These results depend on the background error covariance.
The variational method allows different instruments to be combined if their observations’ forward model operator and error estimates are available. This provides a basis for the development of Integrated Observing Systems. In the future the 1D-VAR retrievals will be extended to include observations from other instruments, such as the cloud base height from a ceilometer, cloud base/top from cloud radar and refractive index gradient from a wind profiler.

Assimilation of these observations could improve mesoscale Numerical Weather Prediction (NWP), especially boundary layer and cloud properties. However, to fully exploit the high time resolution available from ground-based instruments will require 4-Dimensional Variational Assimilation (4D-VAR).
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